PYTHON NOTES
UNIT 1
The Programming Cycle for Python:

Python's development cycle is dramatically shorter than that of traditional tools. In Python, there
are no compile or link steps — Python programs simply import modules at runtime and use the
objects they contain. Because of this, Python programs run immediately after changes are
made.

1. Traditional Development Cycle 2. Python’s Development Cyele
Star the agplication i Start the applicalion 7
Test behavior | 3 Test behavier [
' 3 £
Stop the apphication | i Stopthe application |
: 3 '
Edit program code l X ' Edit program code l_
HEEEH'I'IpIIE code i
1 } * 3. Pyiton’s Development Gyele willk Module Relfvading

Relink the executable I_ P
: 3. Stan the application i
E Test behavicr
(] * ':
Edit program code i

Because Python is interpreted, there's a rapid turnaround after program
changes. And because Python's parser is embedded in Python-based systems,
it's easy to modify programs at runtime. For example, we saw how GUI
programs developed with Python allow developers to change the code that
handles a button press while the GUI remains active; the effect of the code
change may be observed immediately when the button is pressed again.
There's no need to stop and rebuild. More generally, the entire development
process in Python is an exercise in rapid prototyping. Python lends itself to

experimental, interactive program development, and encourages developing
systems incrementally by testing components in isolation and putting them
together later.

Python IDE:

Python IDE (Integrated Development Environment) understand your code much better than a
text editor. It usually provides features such as build automation, code lining, testing and

debugging. This can significantly speed up your work. The downside is that IDEs can be
complicated to use.

List of some famous python IDE are as follows:

1. PyCharm
2. Jupyter

3. Qtdesigner

4. Spyder

5 Atom

Python Variables:

Python variables are dynamically typed, it means we do not
need to declare the data type of variables.

Syntax,
a=5
b="Hello"
c=4.6
print(a)
print(b)

print(c)
output:

5

Hello

4.6

Multiple assignment:
x=y=2=10
print (x)
print (y)
print (z)

output:
10
10
10

Assigning multiple values to multiple variables:
ab,c=57,10

print(a)
print(b)
print(c)

output:

7
10

Python Operators:

Arithmetic Operator Description

" Mult, eg. 3*6=18
1/ Devide, eg. 15/6=2.5
% Modular devision, 15%6=3
I devide, 15//6=2

e Power, eg. 2**4=16

Relational Operators

The following table contains the relational operators that are used to check relations.

Operators Description

< Less than

> Greater than

<= Less than or equal to
»= Greater than or equal to

Equal to

oo Mg moh A P

T e
h b W R =D

I= Mot equal to

<> Not equal to(similar to 1=}

e

=== 10<20
True
>==10=20
False

=== 10<=10
True

=x= 20==15
True

»am H==

. False

. === bl=6

. True
.= 102
. True

L

Assignment Operators

The following table contains the assignment operators that are used to assign values to the variables.

Operators Description

= Assignment
f= Divide and Assign
+= Add and assign

-= Subtract and Assign

ol e A U

T S (A
=l ot B W R =D

= Multiply and assign

%= Modulus and assign

e Exponent and assign

/= Floor division and assign
Example
»»= =10

print{c) o/p=>10
== C+=h

=== print(c) o/p=> 15
=== 0-=5

=>>> print(c) ofp=>10
wmz pR=2

== print{c) ofp=>20
o of=2

. == print(c) ofp==>10
. = o=3

. === print(c) o/p=>1

. »>= =5

- N i]

. === print(c) ofp=> 25
. == off=2

. =»> print(c) ofp=> 12

Logical Operators

The following table contains the arithmetic operators that are used to perform arithmetic operations.
Operators Description

And Logical AND{When both conditions are true output will be true)

oo oo o

Or Logical OR (If any one condition is true output will be true)

Mot Logical NOT(Compliment the condition i.e., reverse)

Example

a=5>4 and 3=2
print(a)

b=5=4 or 3<2
print(b)
c=not(5>4)
print(c)

Output:

True

2. True

Ul ke R A

False
Membership Operators

The following table contains the membership operators.

Operators Description

In Returns true if a variable is in sequence of ancther variable, else false.
not in Returns true if a variable is not in sequence of another variable, else false.
Example
a=10
b=20
list=[10,20,30,40,50]
if (a in list):

print("a is in given list")
else:

7.

o

10.
2 jy 1Y

o0 S gh oo L B

-
==

print("a is not in given list")
if(b not in list):

print("b is not given in list")
else:

print("b is given in list")

Output:

ais in given list
b is given in list

|dentity Operators

The following table contains the identity operators.

Operators Description

Is Returns true if identity of two operands are same, else false

is not Returns true if identity of two operands are not same, else false.

Example

a=20
b=20
if(ais b):
print ab have same identity
else:
print a, b are different
b=10
if{ a is not b):
print ab have different identity

. elze:

print a,b have same identity
Output

e

a,b have same identity

3. ab have different identity

4. »o»

Input/Output Instruction:
Output instruction:
Print() function is used to print in python
e.g(i).
print(“Hello”)
a=5
print(a)
o/p=> Hello
5
e.g(ii).
a=5
b=6.5
c = “welcome”
print(a) o/p=>5
print(b) 0o/p=>6.5

print(c) o/p=> welcome

print(a,b,c) o/p=>5 6.5 welcome

print(“a=",a,"b="b,"c="c) o/p=> a=5 b=6.5
c=welcome

input instruction:
input() function is used to take input in python
there are four method to use input function.
e.g.(i)
a=input(“Enter Name”)
print(a)
Output:

Enter Name Rahul
Rahul

Eg (ii)
b=int(input(“Enter any no.”))
c=b*b
print(c)
Output:

Enter any no. 7

49

Eg (iii)
b=float(input(“Enter any no."))
c=b*b
print(c)
Output:

Enter any no. 4.5
20.25

Eg (iiii)
b=eval(input(“Enter any no."))
c=b*b
print(c)
Output:

Enter any no. 3
9

Notes: * in input method, int keyword is used to store only

integer value.

*In input method, float keyword is used to store only decimal

value.

*In input method, eval keyword is used to store both decimal

and integer value.

*If there is not any keyword(as int or float or eval) then by

default it will take input as string.

£ S

Python Comments

Python supports two types of comments:

1) Single lined comment:

In case user wants to specify a single line comment, then comment must start with #
Eg:

This is single line comment.

2) Muiti lined Comment:

Muiti lined comment can be given inside triple quotes.

eg:

" This
Is
Multipline comment”

e

#single line comment
print "Hello Python”
""This is

multiline comment”

Python Keywords

Python Keywords are special reserved words which convey a special meaning to the compiler/interpreter.
Each keyword have a special meaning and a specific operation. These keywords can't be used as variable.
Following is the List of Python Keywords.

True False None And As
Asset Def class continue break
Else Finally elif Del except
Global For if From import
Raise Try or return pass
Monlocal In not ls lambda

Identifiers

Identifiers are the names given to the fundamental building blocks in a program.
These can be variables ,class ,object functions , lists , dictionaries etc.

There are certain rules defined for naming i.e., Identifiers.

I. An identifier is a long sequence of characters and numbers.

Il.Mo special character except underscore (_) can be used as an identifier.
lll.Keyword should not be used as an identifier name.

IV.Python is case sensitive. So using case is significant,

.First character of an identifier can be character, underscore { _) but not digit.

@ python

Python is a general-purpose, interpreted, interactive, object-oriented, and high-level
programming language. Created by Guido van Rossumduring 1985- 1990, and first
released in 1991.

“Python is general purpose programming language that also works nicely as a scripting
language.”

Web
™ applications
It is used for: Image
Processing

i pplications

+ web development (server-side)
» software development

* system scripting

e handle database and big data

q ; Soffware
- Eﬂmpiex Iﬂaﬂlﬂmﬂhﬂﬁ [J' Development
» rapid prototyping —

Auniciha or

Video-Basead
Applicatons
Buginags
Applications

Characteristics of Python Programming:

» It supports functional and structured programming methods as well as OOP.

¢ [t can be used as a scripting language or can be compiled to byte-code for building
large applications.

¢ It provides very high-level dynamic data types and supports dynamic type
checking.

» It supports automatic garbage collection.
e It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

Python Syntax compared to other programming languages:

e Python was designed for readability, and has some similarities to the English
language with influence from mathematics.

e Python uses new lines to complete a command, as opposed to other programming
languages which often use semicolons or parentheses.

e Python relies on indentation, using whitespace, to define scope; such as the scope
of loops, functions and classes. Other programming languages often use curly-
brackets for this purpose.

Python Features

1) Easy to Learn and Use

Python is easy to learn as compared to other programming languages. Its syntax is straightforward
and much the same as the English language. There is no use of the semicolon or curly-bracket, the
indentation defines the code block.

2) Expressive Language

Python can perform complex tasks using a few lines of code. A simple example, the hello world
program you simply type print("Hello World"). It will take only one line to execute, while Java
or C takes multiple lines.

3) Interpreted Language

Python is an interpreted language; it means the Python program is executed one line at a time. The
advantage of being interpreted language, it makes debugging easy and portable.

4) Cross-platform Language

Python can run equally on different platforms such as Windows, Linux, UNIX, and Macintosh, ete.
So, we can say that Python is a portable language. It enables programmers to develop the software
for several competing platforms by writing a program only once.

5) Free and Open Source

Python is freely available for everyvonme. It is freely available on its official
website www.python.org. It has a large community across the world that is dedicatedly

working towards make new python modules and functions. Anyone can contribute to the Python
community. The open-source means, "Anyone can download its source code without paying.”

6) Object-Oriented Language

Python supports object-oriented language and concepts of classes and objects come into existence.
It supports inheritance, polymorphism, and encapsulation, etc.

7) Extensible

It implies that other languages such as C/C++ can be used to compile the code and thus it can be
used further in our Python code. It converts the program into byte code, and any platform can use
that byte code.

8) Large Standard Library

It provides a vast range of libraries for the various fields such as machine learning, web developer,
and also for the scripting. There are various machine learning libraries, such as Tensor flow,
Pandas, Numpy, Keras, and Pytorch, ete. Django, flask, pyramids are the popular framework for
Python web development.

9) GUI Programming Support

Graphical User Interface is used for the developing Desktop application. PyQT5, Tkinter, Kivy are
the libraries which are used for developing the web application.

10) Integrated

It can be easily integrated with languages like C, C++, and JAVA, etc. Python runs code line by line
like C,C++ Java. It makes easy to debug the code.

11) Embeddable

The code of the other programming language can use in the Python source code. We can use
Python source code in another programming language as well. It can embed other language into
our code.

12) Dynamic Memory Allocation

In Python, we don't need to specify the data-type of the variable. When we assign some value to the
variable, it automatically allocates the memory to the variable at run time. Suppose we are
assigned integer value 15 to x, then we don't need to write int x = 15. Just write x = 15.

Installation on Windows

1. Visit the link hitps://www.python.org/downloads/ to download the latest
release of Python.

+ & | i Sonaw | kb v python.org downlozds
= Apps T JovaFX Tutonal - @ HirkNews | S0 T Flowchar Mak

Help thie PSFraese 530,000 U50 by Mavernber 2150 | Partic pate maur Rsoanmn g Bving Cempasan

Looking for a specific release?

Pythan relesses by wrson number:

Haleate virtian Selrase dite Click far mses
Python LY 2018-L0-H0 & Download Releges hoped
Python LS laaso & Download Releme kot
Pythom 2,43 2013-08-2 & Dewnload Releaze hote:
Fythonm 2.7.0 A013-00-37 & oowninad Polexs Mons
Python 164 1018-08-27 & Downlnan RElEsns hiopes
Python2.7.18 2018-05-C0F & Yowniad Redemme hicbes
Python 365 3013-03-33 & Downlnad Releas Kot
Bethrm LAR AN A fin | Rl §

Wieh pader felegses

2. Double-click the executable file, which is downloaded; the following window will
open.

& Python 3.7.0 (32-bit) Setup - 7 IEH
Install Python 3.7.0 (32-bit)

Select Install Now to install Python with default settings. or chocse
Customize to enable or disable features.

= Install Now
ChUsers\developerAppData\ LocalPrograms\Pythont\Python37-32

Includes |DLE, pip and documentation
Creates shortcuts and file aszociations

= Customize installation
Choose location and features

python
frx ¥| Install launcher for all users (recommended

windows [] Add Python 3.7 to PATH Cancel

Do not forget to check on “Add python to PATH", otherwise you have to set the path
manually.

3. To check if you have python installed on a Windows PC, search in the start bar for
Python or run the following on the Command Line (cmd.exe):

4. Python is an interpreted programming language, this means that as a developer
vou write Python (.py) files in a text editor and then put those files into the
python interpreter to be executed.

Let's write our first Python file, called helloworld.py, which can be done in any
text editor.

helloworld.py

Erint("l—!elln, World!"™)]

The way to run a python file ("helloworld.py") on the command line is simple as
that: Save your file -> Open your command line -> navigate to the directory
where you saved your file -> and run:

C : \Users\Dir Name>python helloworld.py

Python Command Line

To test a short amount of code in python sometimes it is quickest and easiest not to
write the code in a file. This is made possible because Python can be run as a command
line itself,

Type the following on the Windows, Mac or Linux command line:

:\Users\Dir Name>python

Or, if the "python” command did not work, you can try "py":

: \Users\Dir Name>py

From there you can write any python code-

Hello, World!

Running the program using IDLE

IDLE is Python’s Integrated Development and Learning Environment. It has two main window
types, the Shell window and the Editor window. It is possible to have multiple editor
windows simultaneously.

From start menu vou can open IDLE shell window. You can again type in print("hello!") and
so forth, and the shell will do the printing. As you can see, it's interactive. Python responds to
every line of code you enter.

Opening up a new window (from “File->New File” option) will create a script filein editor
window. Here, print("hello!") does not immediately produce output. That is because this is
a script file editing window, which means the commands won't execute until the file is saved
and run.

You can run the seript by going "Run --> Run Module" or simply by hitting F5 (on some
systems, Fn + F5).

Before running, IDLE prompts you to save the script as a file. Choose a name ending in .py
("hello.py™) and save it.

The script will then run in the IDLE shell window. Since you now have a saved script, you can
run it again (and again, and again...).

You can also open IDLE directly from your Python seript file. Right click the file, then choose
"Edit with IDLE".

Rather than going through the "Run..." menu, learn to use F5 (on some systems, Fn + F5) to
run your script. It's much quicker.

Python | Compiled or Interpreted?

In various books of python programming, it is mentioned that python language is
interpreted. But that is half correct the python program is first compiled and then
interpreted.

The compilation part is hidden from the programmer. The compilation part is done first
when we execute our code and this will generate byte code and internally this byte code
gets converted by the python virtual machine(p.v.m) according to the underlying
platform(machine+operating system).

The compiled part is get deleted by the python(as soon as you execute your code) just it
does not want programmers to get into complexity.

Interpreter
| Byte \rirtias . =t I o
| aal. compler S50 £33 machine - =)<
- _.I-..I I It
Source coda Funning code
pyvthon -m first.py pyithon first.cpython-38.pyc
{Compile) {Run)
Library
modules —

To manually check the compilation process-

first.py

Erint(“i am learning python") }

print{("i am enjoying it")

Let, “first.py”isin a folder named “pyprog” in D drive. Then compile using following-

D:\pyproezpython -m py compile first.py

Or we can only write: “python -m first.py”

as you press enter the byte code will get generated. A folder created and this will contain
the byte code of your program.

Now to run the compiled byte code just type the following command:

rpython first.cpython-37.pyc

1 oam enjoying it

the extension .pyc is python compiler.
Use -38.pye (in place of -37.pye) if python version is 3.8.

Python Syntax

Python provides us the two ways to run a program:

¢ Using Interactive interpreter prompt
» Using a script file

i) Interactive Mode Programming:

Invoking the interpreter without passing a script file as a parameter brings up the
following prompt -

5 python

PythonZ.4.3(#1,HovllZ2010,13:34:43)

[GCC 4.1.220080704 (RedBEat4.1.2-48)] on linux2?

Type"help™, "copyright”, "credits"or"license"for more information.
>

Type the following text at the Python prompt and press the Enter —

i}}}print {"Hello, Python!™)

//we have used print() function to print the message on the console.

ii) Script Mode Programming

Invoking the interpreter with a script parameter begins execution of the secript and
continues until the script is finished. When the script is finished, the interpreter is no
longer active.

Let us write a simple Python program in a seript. Python files have extension .py. Type
the following source code in a “test.py” file -

|print ("Hellg, Python!™)

MNow, try to run this program as follows —

|$ python test.py

Pvthon Indentation:

Python uses indentation to indicate a block of code.

if True:

print ("Trus")
else:

print ("False")

o/B: True

The number of spaces in the indentation is variable (but it has to be at least one), All
statements within the block must be indented the same amount. For example -

if True:
print ("True")
print ("yes"}

else:
print ("False"])
print ("no")
0/P: True
yes

However, the following block generates an error —

if True:

print ("True")
else:

print ("False")

ERROR: “expected an indented block”™

You have to use the same number of spaces in the same block of code, otherwise Python
will give you an error:

if &5 > 2:
print ("Five is greater than two!")
print ("Five is greater than two!")

ERROR: "unexpected indent”

if 5 > 2:
print ("Five is greater than two!")
print{"Five is greater than two!")

0/P: Five is greater than two!
Five is greater than two!

Comments in Python:

Comments start with a #, and Python will render the rest of the line as a comment:
EX:

#This is a comment.
print{"Hello, World!")

triple-quoted string is also ignored by Python interpreter and can be used as a
multiline comment:

This is a multiline

comment .
T

Multi-Line Statements:

Statements in Python typically end with a new line. But python allow the use of line
continuation character () to denote that the line should continue. For example —

total = item one + \
item two + \
item three

Statements contained within the [], {}, or () brackets do not need to use the line
continuation character. For example —

days = ['Monday', 'Tuesday', 'Wednesday',
"Thursday', 'Friday']

Multiple Statements on a Single Line:

The semicolon (;) allows multiple statements on the single line given that neither
statement starts a new code block. Here is a sample snip using the semicolon —

import sys; x ='foo';sys.stdout.write(x +'\n"')

Multiple Statement Groups as Suites:

A group of individual statements, which make a single code block are called suites in
Python. Compound or complex statements, such as if, while, def, and class require a
header line and a suite.

Header lines begin the statement (with the keyword) and terminate with a colon { :)
and are followed by one or more lines which make up the suite. For example —

if expression :
suite

elifexpression :
suite

else :
suite

uotation in on:

Python accepts single ('), double (") and triple (" or ") quotes to denote string literals,
as long as the same type of quote starts and ends the string.

The triple quotes are used to span the string across multiple lines. For example, all the
following are legal -

word = 'word'

sentence = "This is a sentence."

paragraph = """This is a paragraph. It is

made up of multiple lines and sentences."""

Pyvthon Identifiers:

A Python identifier is a name used to identify a variable, function, class, module or
other object. An identifier starts with a letter A to Z or a to z or an underscore ()
followed by zero or more letters, underscores and digits (o to 9).

Python does not allow punctuation characters such as @, $, and % within identifiers.
Python is a case sensitive programming language.

Here are naming conventions for Python identifiers -

¢ (Class names start with an uppercase letter. All other identifiers start with a
lowercase letter.

» Starting an identifier with a single leading underscore indicates that the identifier
is private.

¢ Starting an identifier with two leading underscores indicates a strongly private
identifier.

e If the identifier also ends with two trailing underscores, the identifier is a
language-defined special name.

Reserved Words:

The following list shows the Python keywords. These are reserved words and vou

cannot use them as constant or variable or any other identifier names. All the Python
keywords contain lowercase letters only.

And exec | not
Assert | finally or
Break for .. pass
Class from print

Continue | global | raise

Def | if | retum

Del import try

Elif | in while
Else | s with

Except lambda yield

print() Function:

The print() function prints the specified message to the screen, or other standard
output device.The message can be a string, or any other object, the object will be
converted into a string before written to the screen.

Syntax:
print(object(s), sep=separator, end=end, file=file, flush=fLlush)

o object(s)- &ny object, and as many as you like. Will be converted to string before printed
o sep- Optional. Specify how to separate the objects, if there is more than one. Defaultis ' *
o end- Optional. Specify what to print at the end. Default is "\n' {line feed)

o file- Optional. &n object with a write method. Default is sys.stdout

o flush- Optional. & Boolean, specifying if the output is flushed (True) or buffered (False).

Defaultis False.

EX:

print{"Hello", "how are you?") #Hello how are you?
print("Hello", "how are you?", sep="---") #Hello---how are you?
x = ("apple", "banana", "cherry")

print{x) #('apple’', 'banana’', 'cherry')
a=>5

print("a =", a) $a=173

print("a ="+ a) # ERROR

print{"a ="+ str(a)) # a=>5

b=a

print{'a ="', a, '= b') # asi=h

a=>5

print{"a =", a, sep="08800', end="\n\n\n")
print("a =", a, sep="@', end="")

o/P: a =000005

a =0h

*#If you don’t want characters prefaced by \ to be interpreted as special characters, you
can use raw strings by adding an r before the first quote:

print('C:\some\name"') # C:\some

AIME

print(r'C:\some\name") # C:\some\name

Pvthon Variables:

Python variables do not need explicit declaration to reserve memory space.

Variables do not need to be declared with any particular type and can even change type
after they have been set.

String variables can be declared either by using single or double quotes

counter =100# An integer assignment

miles =1000.0# A fleoating point

name: ="John"# A string

X =4 # x iz of type int

X = "Sally" # x iz now of type str
print(x)

Example

yvar = "John"
y_wvar = "John"
_my_var = "John"
myVar = "John"
MYVAR = "John"
myvar2 = "John"

ELegal variable names:

fiIllegal variable names:
2myvar = "John"
my-var = "John"
my var = "John"

Python allows you to assign values to multiple variables in one line:
Ex: X, ¥y, z = "Abc", 28, "Xyz"

Ex: x=y =z = "India"

To combine both text and a variable, Python uses the "+’ character:

Ex: x = "Easy"
print("Python is " , x)

Ex: x = "Python is "
r = "EHSF“
Z= X+Y¥

For numbers, the + character works as a mathematical operator.
If you try to combine a string and a number, Python will give you an error:
Ex: x=75

y = ”Jnhn“
printi{x + y) # ERROR

Global Variables:

Variables that are created outside of a function (as in all of the examples above) are
known as global variables. Global variables can be used by everyone, both inside of
functions and outside.

E;: x = "easy"

def myfunc():
print{"Python is " , x)

myfunc()

If you create a variable with the same name inside a function, this variable will be local,
and can only be used inside the function. The global variable with the same name will
remain as it was, global and with the original value.

Ex: x = "easy"
def myfunc():
x = "programming language"

print("Python is " , x)

myfunc()

print("Python is " , x)

0/P: Python is programming language
Python is easy

The “global” keyword:

Normally, when you create a variable inside a function, that variable is local, and can
only be used inside that function.

To create a global variable inside a function, you can use the “global” keyword.

Ex: def myfunc():
global x
X = IIEHSyH

myfunc()

print{"Python is " , x)

Also, use the global keyword if you want to change a global variable inside a function.

Ex: x = "easy"

def myfunc():
global x

X = "programming language"

my-func()

print("Python is " , x)

0/P: Python is programming lancuage

Data Types in Python

Python has the following data types built-in by default, in these categories:

Text Type: Str

Numeric Types: int, float, complex
Sequence Types: list, tuple, range

Mapping Type: Dict (Dictionary)

Set Types: set, frozenset

Boolean Type: Bool

Binary Types: bytes, bytearray, memoryview

You can get the data type of any object by using the type() function:

X = §
print(type(x))
D/P: <class ‘int'>

L = 'I'EJ’
print({type(x))
pD/P: <class 'str'>

e = 2.5
print(x)
print(type(x))
pfe:2.5

<class "float'>

x = b"Hello"
print(x)
print(type(x))

0/P:b'Hello’
<class 'bytes'>

In Python, the data type is set when you assign a value to a variable

Example Data Type
X = "Hello World" str
X = 28 int
X = 20.5 float
x = 1] complex
x = ["apple", “banana", "cherry"] list
x = ("apple", "banana", "cherry") tuple
x = range(6) range
x = {"name" : "John", "age" : 36} dict
x = {"apple", "banana", "cherry"} set
x = frozenset({"apple”, "banana", “cherry"}) frozenset
X = True bool
X = b"Hello" bytes
X = bytearray(5) bytearray
X = memoryview(bytes(5)) memoryview

If you want to specify the data type, vou can use the following
constructor functions

Example Data Type
x = str("Hello World") str
x = int{28) int
x = float(2e.5) float
x = complex(1j) complex
x = list(("apple”, "banana", "cherry")) list
x = tuple(("apple", "banana", "cherry")) tuple
X = range(6) range
x = dict(name="John", age=36) dict
x = set(("apple”, “"banana", "cherry™)) set
x = frozenset(("apple", "banana", "cherry")) frozenset
x = bool(5) bool
X = bytes(5) bytes
x = bytearray(5) bytearray
X = memoryview(bytes(5)) memoryview
Python Numbers:

There are three numeric types in Python:

1. Int - Integer value can be any length such as integers 10, 2, 29, -20, -150 etc.
Python has no restriction on the length of an integer. Its value belongs to int

2. Float - Float is used to store floating-point numbers like 1.9, 9.902, 15.2, etc. It is
accurate upto 15 decimal points.

3. complex - A complex number contains an ordered pair, i.e., x + iy where x and y
denote the real and imaginary parts, respectively. The complex numbers like
2.14j, 2.0 + 2.3], etc.

1l # int
= 2.8 # float
1j # complex

-
n

Mo
mw 1

**Python provides the type() function to know the data-type of the variable. Similarly,
the isinstance() function is used to check an object belongs to a particular class.

=5
print("The type of a", type(a))

b = 40.5
print("The type of b", type(b))

c = 1+3)
print("The type of c", type(c))
print(” c is a complex number”, isinstance(1+3j,complex))

0/P:The type of a <class 'int'>
The type of b <class '"float'>
The type of o <class "complex'>
Cis a complex number True

** Float can also be scientific numbers with an "e" to indicate the power of 10.

x = 35e3
y = 12E4
z = -87.7e100

Ces

print (x) # 35000.0
print (y) # 120000.0
print(z) # —-8.7T7e+l101

Complex numbers are written with a "j or J" as the imaginary part.

x = 3457
y = 3]
z = =57
print (x) # (3+59)

print(type(x)] #<class 'complex'>
print (y) #5j
print{type(y)) #<class 'complex'>
print (z) #(—-0-573)
print (type(z)) #<class 'complex'>

**You can convert from one
the int(), float(),and complex() methods:

ype

to

o= 1 # int
vy = 2.8 # fleoat
z =173 # complex

Ecﬂnvert from int to float:
= float (x)

convert from float to int:
= int(y)

convert from int to complex:
= complex (x)

An

convert from float to complex:

= complex (y)

rint(a) # 1.0

rint(b) # 2

rint{c) # (1+07)
rint(d) # (2.B+073)
rint (type(a)) # <olass 'float'>
rint{type (b)) # <class '"int'>
rint(type(c)) # <class 'complex'>
rint{type(d)) # =class 'complex'>

d=int({z) #TypeError: can't-convert complex to int
d=float (z)# TypeError: can't convert complex to float

Random Number:

another

with

Python has a built-in module ecalled random that can be used to make random

numbers.

random module functions depend on function random(), which generates the float

number between 0.0 and 1.0

import random
print {random.randeom/()})
print (random.randrange (1, 10))

print (type (random.random())) # <class
print (type (random.randrange(1,10))) # <class

'float'>

'InE's

Generate number between 0 and 1

Generate number between 1 and 10

The random module has a set of methods, below is list of some

commonly used methods

Method Description
randrange() | Returns a random number between the given range
randint() Returns a random number between the given range
choice() Returns a random element from the given sequence
choices() Returns a list with a random selection from the given sequence
shuffle() Takes a sequence and rebturns the sequence in a random order
sample() Returns a given sample of a sequence
randomi{) Returns a randem float number between 0.0 and 1.0
uniform() Returns a random fleat number between two given parameters
seed() Initialize the randoem number generator
getstate() Returns the current intermnal state of the random number generator
setstate[} Restores the internal state of the random number generator
getrandbits() | Returns a number representing the random bits
triangular() :Erz.lﬂl;l: a random float nu!'nber I::let'_weep two given parameters, you can also set
parameter to specify the midpoint between the two other parameters

I'andum.1'alll]rullgc{stﬂrt, stop, stﬁp]
start- Optional. An integer specifying at which position to start. Default 0
stop- Required. An integer specifying at which position to end.

step- Optional. An integer specifying the incrementation. Default 1

random.getrandbits(n)

This method returns an integer formed with bit binary sequence. If n is 2, then it can
generate 0, 1, 2 0or 3.

random.sample(sequence, k)

This method returns a list with a randomly selection of a specified number of items (k)

from a sequnce.

random.triangular(low, high, mode)

This method returns a random floating number between the two specified numbers

(both included), but you can also specify a third parameter, the mode parameter.

The mode parameter gives you the opportunity to weigh the possible outcome closer to

one of the other two parameter values.

Ex:

import random

print (random.choice ([50, 41, 84, 40, 311]1}) # print from (50,41,84,40,31)
print (random.getrandbits (3)) # Primt wvalue b/fw (0-T7)
print {random.randrange (100, 500, 5)) # Print wvalue b/w (100-500),

mylist = ["apple", "banana", "cherry"]

random. shuffle (mylist)

print (mylist) #Print apple,banana,cherry in any order
print(random.sample (mylist, k=2)) #§Print any 2 from apple,banana,cherry

value will be multiple of 5.

Python Casting:
Casting in python is therefore done using constructor functions:

int() - constructs an integer number from an integer literal, a float literal (by
rounding down to the previous whole number), or a string literal (providing the
string represents a whole number)

float() - constructs a float number from an integer literal, a float literal or a
string literal (providing the string represents a float or an integer)

str() - constructs a string from a wide variety of data types, including strings,
integer literals and float literals

Ex:
x = int(1) # x will be 1
y = int(2.8) # y will be 2
z = ink{"3") # z will be 3
a = float(1) # a will be 1.8
b = float(2.8) # b will be 2.8
c = float("3") # c will be 3.8
d = float("4.2") # d will be 4.2
p = str{"s1") # p will be 's1'
q = str(2) # q will be '2'
r = str{3.8) # r will be '3.8'

Pyvthon Booleans:

Boolean type provides two built-in values, True and False. It denotes by the class bool.

When yvou compare two values, the expression is evaluated and Python returns the
Boolean answer.

print{1é > 9) # True
print(18 == 9) # False
print(i8 < 9) # False
a = 28
b =33
if b » a:
print{"b is greater than'a")
else:
print{"b is not greater than a")
0/P:b is not greater than a

Most Values are True:
¢ Almost any value is evaluated to True if it has some sort of content.
¢ Any string is True, except empty strings.
e Any number is True, except 0.
e Any list, tuple, set, and dictionary are True, except empty ones.

** bool() function allows you to evaluate any wvalue, and
return True or False.

bool("abc"™) # True
bool(123) # True

bool(["apple", "cherry"”, "banana"]) # True

Some Values are False:

In fact, there are not many values that evaluates to False, except:
e empty values, such as (), [1, {3, "",
¢ the number 0, and the value None.

¢ And the value False evaluates to False.

bool(False) # False
bool(None) # False
bool(8) # False
bool("") # False
bool(()) # False
bool([]) # False
bool({}) # False

Object References:

What is actually happening when you make a variable assignment? This is an important
question in Python, because the answer differs somewhat from what you'd find in many
other programming languages.

Python is a highly object-oriented language. In fact, virtually every item of data in a
Python program is an object of a specific type or class.

Consider this code:

>>»>print(360)
380

When presented with the statement print(300), the interpreter does the following:

« Creates an integer object
» Gives it the value 300
«» Displays it to the console

A Python variable is a symbolic name that is a reference or pointer to an object. Once an
object is assigned to a variable, you can refer to the object by that name. But the data
itself is still contained within the object.

For example:

»>>»n=300

This assignment creates an integer object with the value 300 and assigns the
variable n to point to that object.

n » | 300

(Variable Assignment)

Now consider the following statement:

»2>mM=N

What happens when it is executed? Python does not create another object. It simply
creates a new symbolic name or reference, m, which points to the same object
that n points to.

n » | 300 | = m

(Multiple References to a Single Object)

Next, suppose you do this:

» > >m=400

Now Python creates a new integer object with the value 400, and m becomes a
reference to it.

n - » | 300
400 | =« m
(References to Separate Objects)

Lastly, suppose this statement is executed next:

»>»»n="foo"

Now Python creates a string object with the wvalue "foo" and makes n reference
that. There is no longer any reference to the integer object 300. It is orphaned, and there
is no way to access it.

- T fcc L)

400

g

(Orphaned Object)

Object Identity:

In Python, every object that is created is given a number that uniquely identifies it. It is
guaranteed that no two objects will have the same identifier during any period in which
their lifetimes overlap. Once an object’s reference count drops to zero and it is garbage
collected, as happened to the 300 object above, then its identifying number becomes
available and may be used again.

The built-in Python functionid() returns an object’s integer identifier. Using
the id() function, you can verify that two variables indeed point to the same object:

»>>n=300
»>>m=n

»>»>»id(n)
60127840
>>>id(m)
68127848

»>>>m=408
»>>id(m)
68127872

Ex:

a=3

b=3

c=a

print{a) #3

print(b) #3

print{c) #3
print(id(a)) # 1360242640
print(id(b)) # 1360242640
print(id(c)) # 1360242640
a=4

print{a) # 4

print(b) #3

print{c)
print(id(a)) # 1360242656
print(id(b)) # 1360242640
print(id(c)) # 1360242640

EETEEEE RSN S S N

User Input

Python provides two built-in methods to read the data from the keyboard. These
methods are given below.

o Input{prompt)
o Traw_input(prompt)

input():

The input function is used in all latest version of the Python. It takes the input from the
user. The Python interpreter automatically identifies whether a user input a string, a
number, or a list.

name = input{"Enter your name: ")
print{name)

How input() function works?

o The flow of the program has stopped until the user enters the input.

o The text statement which also knows as prompt is optional to write
in input() function. This prompt will display the message on the console.

e The input() function automatically converts the user input into string. We need to
explicitly convert the input using the type casting.

o The raw_input() function is used in Python's older version like Python 2.x.

name = raw_input("Enter your name : ")
print name

** By default, the input() function takes input as a string so if we need to enter the
integer or float type input then the input() function must be type casted.

name = input("Enter your name: ") # String Input
age = int{input({"Enter your age: ")) # Integer Input
marks = float(input{"Enter your marks: ")) # Float Input

print("The name is:", name)
print("The age is:", age)

print("The marks is:", marks)

e e S RS R b R e

