
17 | P a g e

Unit-4

Instruction Timing and Cycle

An instruction cycle (also known as the fetch–decode–execute cycle or the fetch-execute cycle) is the

basic operational process of a computer. It is the process by which a computer retrieves

a program instruction from its memory, determines what actions the instruction dictates, and carries out

those actions. This cycle is repeated continuously by a computer's central processing unit (CPU),

from boot-up to when the computer is shut down.

In simpler CPU's the instruction cycle is executed sequentially, each instruction being processed before

the next one is started. In most modern CPU's the instruction cycles are instead executed concurrently,

and often in parallel, through an instruction pipeline: the next instruction starts being processed before

the previous instruction has finished, which is possible because the cycle is broken up into separate steps.

1. Initiating the cycle

 The cycle starts immediately when power is applied to the system using an initial PC value that

is predefined for the system architecture

 Typically this address points to instructions in a read-only memory (ROM) (not the random

access memory or RAM) which begins the process of loading the operating system.

2. Fetch the Instruction

Step 1 of the Instruction Cycle is called the Fetch Cycle. This step is the same for each instruction.

i. The CPU sends PC to the MAR and sends a READ command on the control bus

ii. In response to the read command (with address equal to PC), the memory returns the data

stored at the memory location indicated by PC on the data bus.

iii. The CPU copies the data from the data bus into its MDR (also known as MBR)

iv. A fraction of a second later, the CPU copies the data from the MDR to the Instruction Register

(IR)

v. The PC is incremented so that it points to the following instruction in memory. This step

prepares the CPU for the next cycle. The Control Unit fetches the instruction's address from

the Memory Unit

3. Decode the Instruction

 Step 2 of the instruction Cycle is called the Decode Cycle. The decoding process allows the

CPU to determine what instruction is to be performed, so that the CPU can tell how many

operands it needs to fetch in order to perform the instruction.

 The opcode fetched from the memory is decoded for the next steps and moved to the

appropriate registers. The decoding is done by the CPU's Control Unit.

4. Read the effective address

 Step 3 is deciding which operation it is. If this is a Memory operation - in this step the computer

checks if it's a direct or indirect memory operation:

 Direct memory instruction - Nothing is being done.

 Indirect memory instruction - The effective address is being read from the memory. If this is a

I/O or Register instruction - the computer checks its kind and executes the instruction.

https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Computer_storage
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Booting
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Instruction_pipeline

18 | P a g e

5. Execute the Instruction

 Step 4 of the Instruction Cycle is the Execute Cycle. Here, the function of the instruction is

performed.

 If the instruction involves arithmetic or logic, the Arithmetic Logic Unit is utilized. This is the

only stage of the instruction cycle that is useful from the perspective of the end user.

 Everything else is overhead required to make the execute stage happen.

Machine cycle

A machine cycle, also called a processor cycle or a instruction cycle, is the basic operation performed

by a central processing unit (CPU). A CPU is the main logic unit of a computer.

A machine cycle consists of a sequence of three steps that is performed continuously and at a rate of

millions per second while a computer is in operation. They are fetch, decode and execute. There also is

a fourth step, store, in which input and output from the other three phases is stored in memory for later

use; however, no actual processing is performed during this step.

In the fetch step, the control unit requests that main memory provide it with the instruction that is

stored at the address (i.e., location in memory) indicated by the control unit's program counter.

The control unit is a part of the CPU that also decodes the instruction in the instruction register.

A register is a very small amount of very fast memory that is built into the CPU in order to speed up its

operations by providing quick access to commonly used values; instruction registers are registers that

hold the instruction being executed by the CPU. Decoding the instructions in the instruction register

involves breaking the operand field into its components based on the instructions opcode.

Opcode (an abbreviation of operation code) is the portion of a machine language instruction that

specifies what operation is to be performed by the CPU. Machine language, also called machine code,

refers to instructions coded in patterns of bits (i.e., zeros and ones) that are directly readable and

executable by a CPU.

A program counter, also called the instruction pointer in some computers, is a register that indicates

where the computer is in its instruction sequence. It holds either the address of the instruction currently

being executed or the address of the next instruction to be executed, depending on the details of the

particular computer. The program counter is automatically incremented for each machine cycle so that

instructions are normally retrieved sequentially from memory.

The control unit places these instructions into its instruction register and then increments the program

counter so that it contains the address of the next instruction stored in memory. It then executes the

instruction by activating the appropriate circuitry to perform the requested task. As soon as the

instruction has been executed, it restarts the machine cycle, beginning with the fetch step.

T states

One complete cycle of clock is called as T-state as shown in the above figure. A T-state is measured from

the falling edge of one clock pulse to the falling edge of the next clock pulse. Various versions of 8086

have maximum clock frequency from 5MHz to 10MHz. Hence the minimum time for one T-state is

between 100 to 200 nsec.

http://www.linfo.org/cpu.html
http://www.linfo.org/computer.html
http://www.linfo.org/memory.html
http://www.linfo.org/memory.html
http://www.linfo.org/register.html
http://www.linfo.org/opcode.html
http://www.linfo.org/machine_code.html
http://www.linfo.org/bit.html

19 | P a g e

Instruction Execution And Timing Diagram:

Each instruction in 8085 microprocessor consists of two part- operation code (opcode) and operand. The

opcode is a command such as ADD and the operand is an object to be operated on, such as a byte or the

content of a register.

Instruction Cycle: The time taken by the processor to complete the execution of an instruction. An

instruction cycle consists of one to six machine cycles.

Machine Cycle: The time required to complete one operation; accessing either the memory or I/O

device. A machine cycle consists of three to six T-states.

T-State: Time corresponding to one clock period. It is the basic unit to calculate execution of

instructions or programs in a processor.

To execute a program, 8085 performs various operations as:

 Opcode fetch

 Operand fetch

 Memory read/write

 I/O read/write

External communication functions are:

 Memory read/write

 I/O read/write

 Interrupt request acknowledge

Opcode Fetch Machine Cycle:

It is the first step in the execution of any instruction. The timing diagram of this cycle is given below

The following points explain the various operations that take place and the signals that are changed

during the execution of opcode fetch machine cycle:

T1 clock cycle

i. The content of PC is placed in the address bus; AD0 - AD7 lines contains lower bit address and A8 –

A15 contains higher bit address.

ii. M IO/ signal is low indicating that a memory location is being accessed. S1 and S0 also changed to

the levels as indicated in Table 1.

iii. ALE is high, indicates that multiplexed AD0 – AD7 act as lower order bus.

T2 clock cycle

i. Multiplexed address bus is now changed to data bus.

ii. The RD signal is made low by the processor. This signal makes the memory device load the data bus

with the contents of the location addressed by the processor.

20 | P a g e

T3 clock cycle

i. The opcode available on the data bus is read by the processor and moved to the instruction

register. ii. The RD signal is deactivated by making it logic 1.

T4 clock cycle

i. The processor decode the instruction in the instruction register and generate the necessary

control signals to execute the instruction. Based on the instruction further operations such as

fetching, writing into memory etc takes place.

Timing diagram for opcode fetch cycle

Memory Read Machine Cycle:

The memory read cycle is executed by the processor to read a data byte from memory. The machine

cycle is exactly same to opcode fetch except: a) It has three T-states b) The S0 signal is set to 0. The

timing diagram of this cycle is given in Fig.

21 | P a g e

Timing diagram for memory read machine cycle

Memory Write Machine Cycle:

The memory write cycle is executed by the processor to write a data byte in a memory location. The

processor takes three T-states and WR signal is made low. The timing diagram of this cycle is given

below.

I/O Read Cycle:

The I/O read cycle is executed by the processor to read a data byte from I/O port or from peripheral,

which is I/O mapped in the system. The 8-bit port address is placed both in the lower and higher order

address bus. The processor takes three T-states to execute this machine cycle. The timing diagram of this

cycle is given below

22 | P a g e

Timing diagram for memory write machine cycle

Timing diagram I/O read machine cycle

23 | P a g e

I/O Write Cycle:

The I/O write cycle is executed by the processor to write a data byte to I/O port or to a peripheral, which

is I/O mapped in the system. The processor takes three T-states to execute this machine cycle. The timing

diagram of this cycle is given in dia.

Timing diagram I/O write machine cycle

Ex: Timing diagram for IN 80H.

24 | P a g e

 Assembly languages

An assembly (or assembler) language, often abbreviated asm, is a low-level programming language for

a computer, or other programmable device, in which there is a very strong (but often not one-to-one)

correspondence between the language and the architecture's machine code instructions. Each assembly

language is specific to a particular computer architecture. In contrast, most high-level programming

languages are generally portable across multiple architectures but require interpreting or compiling.

Assembly language may also be called symbolic machine code.

 Machine language

Machine code or machine language is a set of instructions executed directly by a computer's central

processing unit (CPU). Each instruction performs a very specific task, such as a load, a jump, or

an ALU operation on a unit of data in a CPU register or memory. Every program directly executed by a

CPU is made up of a series of such instructions. (The phrase 'directly executed' needs some clarification;

machine code is by definition the lowest level of programming detail visible to the programmer, but

internally many processors use microcode or optimize and transform machine code instructions into

sequences of micro-ops in a sophisticated way.)

 Mnemonics

Mnemonics allow users to access quickly a wide variety of commands, services, programs and functions

without the need to type out extended phrases. One example of a mnemonic code is the term "inc," which

on an Intel microprocessor refers to the command "increase by one." Rather than type the entire phrase,

the letters "inc" can be entered. Mnemonic code derives from the concept of traditional mnemonics in

which abbreviations, rhymes or simple stories are used to help people remember information.

Instruction Set and Execution In 8085

Based on the design of the ALU and decoding unit, the microprocessor manufacturer provides

instruction set for every microprocessor. The instruction set consists of both machine code and

mnemonics.

An instruction is a binary pattern designed inside a microprocessor to perform a specific function. The

entire group of instructions that a microprocessor supports is called instruction set. Microprocessor

instructions can be classified based on the parameters such functionality, length and operand addressing.

Classification based on functionality:

I. Data transfer operations: This group of instructions copies data from source to destination. The

content of the source is not altered.

II. Arithmetic operations: Instructions of this group perform operations like addition, subtraction,

increment & decrement. One of the data used in arithmetic operation is stored in accumulator and

the result is also stored in accumulator.

III. Logical operations: Logical operations include AND, OR, EXOR, NOT. The operations like AND,

OR and EXOR uses two operands, one is stored in accumulator and other can be any register or

https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Bijection
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Porting
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Jump_instruction
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Microcode
https://en.wikipedia.org/wiki/Micro-operation

25 | P a g e

memory location. The result is stored in accumulator. NOT operation requires single operand,

which is stored in accumulator.

IV. Branching operations: Instructions in this group can be used to transfer program sequence from

one memory location to another either conditionally or unconditionally. V. Machine control

operations: Instruction in this group control execution of other instructions and control operations

like interrupt, halt etc.

Classification based on length:

I. One-byte instructions: Instruction having one byte in machine code. Examples are depicted in

Table 2

II. Two-byte instructions: Instruction having two byte in machine code. Examples are depicted in

Table 3.

III. Three-byte instructions: Instruction having three byte in machine code. Examples are depicted in

Table 4.

Table 2 Examples of one byte instructions

Opcode Operand Machine code/Hex code

MOV A, B 78

ADD M 86

Table 3 Examples of two byte instructions

Opcode Operand Machine

code/Hex code

Byte description

MVI A, 7FH 3E First byte

 7F Second byte

ADI 0FH C6 First byte

 0F Second byte

Table 4 Examples of three byte instructions

Opcode Operand Machine code/Hex

code

Byte description

JMP 9050H C3 First byte

 50 Second byte

 90 Third byte

LDA 8850H 3A First byte

 50 Second byte

 88 Third byte

Addressing Modes in Instructions:

The process of specifying the data to be operated on by the instruction is called addressing. The various

formats for specifying operands are called addressing modes.

The 8085 has the following five types of addressing:

I. Immediate addressing

26 | P a g e

II. Memory direct addressing

III. Register direct addressing

IV. Indirect addressing

V. Implicit addressing

Immediate Addressing:

In this mode, the operand given in the instruction - a byte or word – transfers to the destination register or

memory location.

Ex: MVI A, 9AH

 The operand is a part of the instruction.

 The operand is stored in the register mentioned in the instruction.

Memory Direct Addressing:

Memory direct addressing moves a byte or word between a memory location and register. The memory

location address is given in the instruction.

Ex: LDA 850FH

This instruction is used to load the content of memory address 850FH in the accumulator.

Register Direct Addressing:

Register direct addressing transfer a copy of a byte or word from source register to destination register.

Ex: MOV B, C

It copies the content of register C to register B.

Indirect Addressing:

Indirect addressing transfers a byte or word between a register and a memory location.

Ex: MOV A, M

Here the data is in the memory location pointed to by the contents of HL pair. The data is moved to the

accumulator.

Implicit Addressing

In this addressing mode the data itself specifies the data to be operated upon.

Ex: CMA

The instruction complements the content of the accumulator. No specific data or operand is mentioned in

the instruction.

27 | P a g e

INSTRUCTION SET OF 8085

Data Transfer Instructions

Opcode Operand Description

Copy from source to destination

MOV Rd, Rs This instruction copies the contents of the source
 M, Rs register into the destination register; the contents of
 Rd, M the source register are not altered. If one of the operands is a
 memory location, its location is specified by the contents of
 the HL registers.

 Example: MOV B, C or MOV B, M

Move immediate 8-bit

MVI Rd, data The 8-bit data is stored in the destination register or
 M, data memory. If the operand is a memory location, its location is
 specified by the contents of the HL registers.

 Example: MVI B, 57H or MVI M, 57H

Load accumulator

LDA 16-bit address The contents of a memory location, specified by a
 16-bit address in the operand, are copied to the accumulator.
 The contents of the source are not altered.

 Example: LDA 2034H

Load accumulator indirect

LDAX B/D Reg. pair The contents of the designated register pair point to a memory
 location. This instruction copies the contents of that memory
 location into the accumulator. The contents of either the
 register pair or the memory location are not altered.
 Example: LDAX B

Load register pair immediate

LXI Reg. pair, 16-bit data The instruction loads 16-bit data in the register pair

designated in the operand.

Example: LXI H, 2034H or LXI H, XYZ

Load H and L registers direct

LHLD 16-bit address The instruction copies the contents of the memory location

pointed out by the 16-bit address into register L and copies the

contents of the next memory location into register H. The

contents of source memory locations are not altered.

Example: LHLD 2040H

28 | P a g e

Store accumulator direct

STA 16-bit address The contents of the accumulator are copied into the memory
 location specified by the operand. This is a 3-byte instruction,
 the second byte specifies the low-order address and the third
 byte specifies the high-order address.

 Example: STA 4350H

Store accumulator indirect

STAX Reg. pair The contents of the accumulator are copied into the memory
 location specified by the contents of the operand (register
 pair). The contents of the accumulator are not altered.

 Example: STAX B

Store H and L registers direct

SHLD 16-bit address The contents of register L are stored into the memory location
 specified by the 16-bit address in the operand and the contents
 of H register are stored into the next memory location by
 incrementing the operand. The contents of registers HL are
 not altered. This is a 3-byte instruction, the second byte
 specifies the low-order address and the third byte specifies the
 high-order address.

 Example: SHLD 2470H

Exchange H and L with D and E

XCHG None The contents of register H are exchanged with the contents of
 register D, and the contents of register L are exchanged with
 the contents of register E.

 Example: XCHG

Copy H and L registers to the stack pointer

SPHL None The instruction loads the contents of the H and L registers into
 the stack pointer register, the contents of the H register
 provide the high-order address and the contents of the L
 register provide the low-order address. The contents of the H
 and L registers are not altered.

 Example: SPHL

Exchange H and L with top of stack

XTHL None The contents of the L register are exchanged with the stack
 location pointed out by the contents of the stack pointer
 register. The contents of the H register are exchanged with
 the next stack location (SP+1); however, the contents of the
 stack pointer register are not altered.
 Example: XTHL

29 | P a g e

Push register pair onto stack

PUSH Reg. pair The contents of the register pair designated in the operand are
 copied onto the stack in the following sequence. The stack
 pointer register is decremented and the contents of the high-
 order register (B, D, H, A) are copied into that location. The
 stack pointer register is decremented again and the contents of
 the low-order register (C, E, L, flags) are copied to that
 location.

 Example: PUSH B or PUSH A

Pop off stack to register pair

POP Reg. pair The contents of the memory location pointed out by the stack
 pointer register are copied to the low-order register (C, E, L,
 status flags) of the operand. The stack pointer is incremented
 by 1 and the contents of that memory location are copied to
 the high-order register (B, D, H, A) of the operand. The stack
 pointer register is again incremented by 1.
 Example: POP H or POP A

Output data from accumulator to a port with 8-bit address

OUT 8-bit port address The contents of the accumulator are copied into the I/O port

specified by the operand.

Example: OUT F8H

Input data to accumulator from a port with 8-bit address

IN 8-bit port address The contents of the input port designated in the operand are

read and loaded into the accumulator.

Example: IN 8CH

30 | P a g e

Arithmetic Instructions

Opcode Operand Description

Add register or memory to accumulator
ADD R The contents of the operand (register or memory) are

 M added to the contents of the accumulator and the result is
 stored in the accumulator. If the operand is a memory
 location, its location is specified by the contents of the HL
 registers. All flags are modified to reflect the result of the
 addition.

 Example: ADD B or ADD M

Add register to accumulator with carry

ADC R The contents of the operand (register or memory) and
 M the Carry flag are added to the contents of the accumulator
 and the result is stored in the accumulator. If the operand is a
 memory location, its location is specified by the contents of
 the HL registers. All flags are modified to reflect the result of
 the addition.

 Example: ADC B or ADC M

Add immediate to accumulator

ADI 8-bit data The 8-bit data (operand) is added to the contents of the
 accumulator and the result is stored in the accumulator. All
 flags are modified to reflect the result of the addition.

 Example: ADI 45H

Add immediate to accumulator with carry

ACI 8-bit data The 8-bit data (operand) and the Carry flag are added to the
 contents of the accumulator and the result is stored in the
 accumulator. All flags are modified to reflect the result of the
 addition.

 Example: ACI 45H

Add register pair to H and L registers

DAD Reg. pair The 16-bit contents of the specified register pair are added to
 the contents of the HL register and the sum is stored in the
 HL register. The contents of the source register pair are not
 altered. If the result is larger than 16 bits, the CY flag is set.
 No other flags are affected.
 Example: DAD H

31 | P a g e

Subtract register or memory from accumulator
SUB R The contents of the operand (register or memory) are

 M subtracted from the contents of the accumulator, and the result
 is stored in the accumulator. If the operand is a memory
 location, its location is specified by the contents of the HL
 registers. All flags are modified to reflect the result of the
 subtraction.

 Example: SUB B or SUB M

Subtract source and borrow from accumulator

SBB R The contents of the operand (register or memory) and
 M the Borrow flag are subtracted from the contents of the
 accumulator and the result is placed in the accumulator. If
 the operand is a memory location, its location is specified by
 the contents of the HL registers. All flags are modified to
 reflect the result of the subtraction.

 Example: SBB B or SBB M

Subtract immediate from accumulator

SUI 8-bit data The 8-bit data (operand) is subtracted from the contents of the
 accumulator and the result is stored in the accumulator. All
 flags are modified to reflect the result of the subtraction.
 Example: SUI 45H

Subtract immediate from accumulator with borrow

SBI 8-bit data The 8-bit data (operand) and the Borrow flag are subtracted

from the contents of the accumulator and the result is stored in

the accumulator. All flags are modified to reflect the result
of the subtracion.

 Example: SBI 45H

Increment register or memory by 1

INR R The contents of the designated register or memory) are
 M incremented by 1 and the result is stored in the same place. If
 the operand is a memory location, its location is specified by
 the contents of the HL registers.
 Example: INR B or INR M

Increment register pair by 1

INX R The contents of the designated register pair are incremented by

1 and the result is stored in the same place.

Example: INX H

32 | P a g e

Decrement register or memory by 1

DCR R The contents of the designated register or memory are

M decremented by 1 and the result is stored in the same place. If

the operand is a memory location, its location is specified by

the contents of the HL registers.

Example: DCR B or DCR M

Decrement register pair by 1

DCX R The contents of the designated register pair are decremented by

1 and the result is stored in the same place.

Example: DCX H

Decimal adjust accumulator

DAA none The contents of the accumulator are changed from a binary

value to two 4-bit binary coded decimal (BCD) digits. This is

the only instruction that uses the auxiliary flag to perform the

binary to BCD conversion, and the conversion procedure is

described below. S, Z, AC, P, CY flags are altered to reflect the

results of the operation.

If the value of the low-order 4-bits in the accumulator is greater

than 9 or if AC flag is set, the instruction adds 6 to the low-

order four bits.

If the value of the high-order 4-bits in the accumulator is

greater than 9 or if the Carry flag is set, the instruction adds 6 to

the high-order four bits.

Example: DAA

33 | P a g e

Branching Instructions

Opcode Operand Description

Jump unconditionally

JMP 16-bit address The program sequence is transferred to the memory location

specified by the 16-bit address given in the operand.

Example: JMP 2034H or JMP XYZ

Jump conditionally

Operand: 16-bit address

The program sequence is transferred to the memory location

specified by the 16-bit address given in the operand based on

the specified flag of the PSW as described below.

Example: JZ 2034H or JZ XYZ

Opcode Description Flag Status

JC Jump on Carry CY = 1

JNC Jump on no Carry CY = 0

JP Jump on positive S = 0

JM Jump on minus S = 1

JZ Jump on zero Z = 1

JNZ Jump on no zero Z = 0

JPE Jump on parity even P = 1
JPO Jump on parity odd P = 0

34 | P a g e

Unconditional subroutine call

CALL 16-bit address The program sequence is transferred to the memory location

specified by the 16-bit address given in the operand. Before the

transfer, the address of the next instruction after CALL (the

contents of the program counter) is pushed onto the stack.

Example: CALL 2034H or CALL XYZ

Call conditionally

Operand: 16-bit address

The program sequence is transferred to the memory location

specified by the 16-bit address given in the operand based on

the specified flag of the PSW as described below. Before the

transfer, the address of the next instruction after the call (the

contents of the program counter) is pushed onto the stack.

Example: CZ 2034H or CZ XYZ

Opcode Description Flag Status
CC Call on Carry CY = 1

CNC Call on no Carry CY = 0

CP Call on positive S = 0

CM Call on minus S = 1

CZ Call on zero Z = 1

CNZ Call on no zero Z = 0

CPE Call on parity even P = 1
CPO Call on parity odd P = 0

35 | P a g e

Return from subroutine unconditionally

RET none The program sequence is transferred from the subroutine to the

calling program. The two bytes from the top of the stack are

copied into the program counter, and program execution begins

at the new address.

Example: RET

Return from subroutine conditionally

Operand: none

The program sequence is transferred from the subroutine to the

calling program based on the specified flag of the PSW as

described below. The two bytes from the top of the stack are

copied into the program counter, and program execution

begins at the new address.

Example: RZ

Opcode Description Flag Status

RC Return on Carry CY = 1

RNC Return on no Carry CY = 0

RP Return on positive S = 0

RM Return on minus S = 1

RZ Return on zero Z = 1

RNZ Return on no zero Z = 0

RPE Return on parity even P = 1

RPO Return on parity odd P = 0

36 | P a g e

Load program counter with HL contents

PCHL none The contents of registers H and L are copied into the program

counter. The contents of H are placed as the high-order byte
and the contents of L as the low-order byte.

 Example: PCHL

Restart

RST 0-7 The RST instruction is equivalent to a 1-byte call instruction to

one of eight memory locations depending upon the number.

The instructions are generally used in conjunction with

interrupts and inserted using external hardware. However

these can be used as software instructions in a program to

transfer program execution to one of the eight locations. The
addresses are:

Instruction Restart Address

RST 0 0000H

RST 1 0008H

RST 2 0010H

RST 3 0018H

RST 4 0020H

RST 5 0028H

RST 6 0030H

RST 7 0038H

The 8085 has four additional interrupts and these interrupts

generate RST instructions internally and thus do not require

any external hardware. These instructions and their Restart

addresses are:

Interrupt Restart Address

TRAP 0024H

RST 5.5 002CH

RST 6.5 0034H

RST 7.5 003CH

37 | P a g e

Logical Instructions

Opcode Operand Description

Compare register or memory with accumulator

CMP R The contents of the operand (register or memory) are

M compared with the contents of the accumulator. Both

contents are preserved . The result of the comparison is shown

by setting the flags of the PSW as follows:

if (A) < (reg/mem): carry flag is set if

(A) = (reg/mem): zero flag is set

if (A) > (reg/mem): carry and zero flags are reset

Example: CMP B or CMP M

Compare immediate with accumulator

CPI 8-bit data The second byte (8-bit data) is compared with the contents of

the accumulator. The values being compared remain

unchanged. The result of the comparison is shown by setting

the flags of the PSW as follows:

if (A) < data: carry flag is set if

(A) = data: zero flag is set

if (A) > data: carry and zero flags are reset Example:

CPI 89H

Logical AND register or memory with accumulator

ANA R The contents of the accumulator are logically ANDed with
 M the contents of the operand (register or memory), and the
 result is placed in the accumulator. If the operand is a
 memory location, its address is specified by the contents of
 HL registers. S, Z, P are modified to reflect the result of the
 operation. CY is reset. AC is set.

 Example: ANA B or ANA M

Logical AND immediate with accumulator

ANI 8-bit data The contents of the accumulator are logically ANDed with the
 8-bit data (operand) and the result is placed in the
 accumulator. S, Z, P are modified to reflect the result of the
 operation. CY is reset. AC is set.
 Example: ANI 86H

38 | P a g e

Exclusive OR register or memory with accumulator

XRA R The contents of the accumulator are Exclusive ORed with
 M the contents of the operand (register or memory), and the
 result is placed in the accumulator. If the operand is a
 memory location, its address is specified by the contents of
 HL registers. S, Z, P are modified to reflect the result of the
 operation. CY and AC are reset.

 Example: XRA B or XRA M

Exclusive OR immediate with accumulator

XRI 8-bit data The contents of the accumulator are Exclusive ORed with the
 8-bit data (operand) and the result is placed in the
 accumulator. S, Z, P are modified to reflect the result of the
 operation. CY and AC are reset.

 Example: XRI 86H

Logical OR register or memory with accumulaotr

ORA R The contents of the accumulator are logically ORed with
 M the contents of the operand (register or memory), and the
 result is placed in the accumulator. If the operand is a
 memory location, its address is specified by the contents of
 HL registers. S, Z, P are modified to reflect the result of the
 operation. CY and AC are reset.
 Example: ORA B or ORA M

Logical OR immediate with accumulator

ORI 8-bit data The contents of the accumulator are logically ORed with the

8-bit data (operand) and the result is placed in the accumulator.

S, Z, P are modified to reflect the result of the operation. CY

and AC are reset.

Example: ORI 86H

Rotate accumulator left

RLC none Each binary bit of the accumulator is rotated left by one

position. Bit D7 is placed in the position of D0 as well as in the

Carry flag. CY is modified according to bit D7. S, Z, P,

AC are not affected.

 Example: RLC

Rotate accumulator right

RRC none Each binary bit of the accumulator is rotated right by one

 position. Bit D0 is placed in the position of D7 as well as in

 the Carry flag. CY is modified according to bit D0. S, Z, P,
 AC are not affected.
 Example: RRC

39 | P a g e

Rotate accumulator left through carry

RAL none Each binary bit of the accumulator is rotated left by one

 position through the Carry flag. Bit D7 is placed in the Carry
 flag, and the Carry flag is placed in the least significant

 position D0. CY is modified according to bit D7. S, Z, P, AC
 are not affected.
 Example: RAL

Rotate accumulator right through carry

RAR none Each binary bit of the accumulator is rotated right by one

 position through the Carry flag. Bit D0 is placed in the Carry
 flag, and the Carry flag is placed in the most significant

 position D7. CY is modified according to bit D0. S, Z, P, AC
 are not affected.
 Example: RAR

Complement accumulator

CMA none The contents of the accumulator are complemented. No flags

are affected.

Example: CMA

Complement carry

CMC none The Carry flag is complemented. No other flags are affected.

Example: CMC

Set Carry

STC none The Carry flag is set to 1. No other flags are affected.

Example: STC

40 | P a g e

Control Instructions

Opcode Operand Description

No operation

NOP none No operation is performed. The instruction is fetched and

decoded. However no operation is executed.

Example: NOP

Halt and enter wait state

HLT none The CPU finishes executing the current instruction and halts

any further execution. An interrupt or reset is necessary to exit

from the halt state.

Example: HLT

Disable interrupts

DI none The interrupt enable flip-flop is reset and all the interrupts

except the TRAP are disabled. No flags are affected.

Example: DI

Enable interrupts

EI none The interrupt enable flip-flop is set and all interrupts are

enabled. No flags are affected. After a system reset or the

acknowledgement of an interrupt, the interrupt enable flip-

flop is reset, thus disabling the interrupts. This instruction is

necessary to reenable the interrupts (except TRAP).

Example: EI

41

Read interrupt mask

RIM none This is a multipurpose instruction used to read the status of interrupts

7.5, 6.5, 5.5 and read serial data input bit. The instruction loads

eight bits in the accumulator with the following interpretations.

Example: RIM

Set interrupt mask

SIM none This is a multipurpose instruction and used to implement the 8085

interrupts 7.5, 6.5, 5.5, and serial data output. The instruction

interprets the accumulator contents as follows.

Example: SIM

	Machine cycle
	T states
	Instruction Execution And Timing Diagram:
	Opcode Fetch Machine Cycle:
	T1 clock cycle
	T2 clock cycle
	T3 clock cycle
	T4 clock cycle
	Timing diagram for opcode fetch cycle
	Timing diagram for memory read machine cycle Memory Write Machine Cycle:
	I/O Read Cycle:
	Timing diagram for memory write machine cycle
	I/O Write Cycle:
	Timing diagram I/O write machine cycle
	Assembly languages
	Machine language
	Mnemonics
	Instruction Set and Execution In 8085
	Table 2 Examples of one byte instructions
	Table 4 Examples of three byte instructions
	Immediate Addressing:
	Memory Direct Addressing:
	Register Direct Addressing:
	Indirect Addressing:
	Implicit Addressing
	INSTRUCTION SET OF 8085
	Arithmetic Instructions
	Branching Instructions
	Logical Instructions
	Control Instructions

