v 3 ot e e

= VISION INSTITUTE OF TECHNOLOGY, ALIGARH
AT Subject: ENGINEERING MATHEMATICS-II

UnitV
Line Integrals

The basic theme Lere is that complex line integrals will mirror much of what we've seen for
multivariable ealealus line integrals. But, just like working with ¢ is easier than working
with sine and ecsine, complex hne integrals are easier to work with than therr multivariable
analogs. At the same time they will give deep insight into the workings of these integrals.

e The complex plane: 2 = x» + iy
e The complex differential d2 = dx + idy
e A curve in the complex plane: y(t) = x(t) 4 iy(t), defined fora <t < b.

e A complex function: f(2) = u(z.y) +iv(z,y)

Nate. Line intograks are alsh ealled path or contour ntegrals

Given the ingredients we define the complex line integral / flz)dz by
Y

2)dz = " i )Y (1) dt.
lf() fom( DY) (1)

You should note that this notation lcoks just like integrls of a real variable. We don’: need
the veetors and dot products of line integrals in R2. Also, make sure you understand thet
the product f(~y(£))7"(1) s just a product of compex munbers.

An alternative notation uses ds = dr + idy to write

/f(:)d:=/ft.-n-)(d.r+ldy) (2)
a ¥

Let’s check that Equations 1 and 2 are the same. Equation 2 is really a multivariable
calculus expression, so thinking of v(t) as (x(t), y(t)) it becomes

b
/!(:)d: = / (u(z(t), y(t)) + iv(x(t), y(t))(2/(t) + iy (¢))dt
5
/ f(2)dz = / (u(z(t), y(t)) + fv(x(t). y(t))(2'(¢) + i1/ (¢))dt
But, u(x{t), yit)) -+ to(x(t.y(t)) = F(7(1)) and 27(f) + 13/ (f) = «'{t) so the right hand side

of this equation is

h
[ retyriean
a
That is, it Is exactly the same as the expression in Equation 1.

Example 3.1. Compute j 2%dz alonz the strajght line from O to | + 4.
i

answer: Wo parametrize the eurve s (1) = (1 +§) with 0 < ¢ < 1, So y/(f) = 1 — i, The

line Integral is

1 ¢ 2” -
/z’a‘z::/ (1 +x_i°(!+:)dl=-¥.
A 3
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Example 3.2, Compute / 7 dx along the straight line from O to 1 + 4.
v

answer: We can use the same parametrization as in the previous example, So,
1
jfdz :/ t(1=i)(1+i)dt =1.
¥ L

Fxample 3.3. Compute / > dx along the wnit eircle
Y

answer; We parametrize the unit circie by 7(0) — ¢, where 0 < 0 < 27. We have
Y(0) = i¢"”, So, the Integral becomes

" o - =T e Py
/ ‘."d: - / l.‘bol.‘?mda = / il.‘!w dl = —' =0.
2l 0 0 3 0

Examplo 2.4. Computa / ¥ds along the unit circle,

answer: Paramettize C; (1) = o, with 0 <z < 27. So, 7'it) = {¢". Puttilng this into the
Integral glves
> 2z
[ra= [ o*'te"dt:/ i de =[ZE]
c (] 0
Cauchy Integral Theorem

Let f be holomorphic inside €2 be bounded by a closed piecewise-smooth
simple curve ¥ and also at the point of . Then

f'f(:) dz =0

Proof. Let f(z) = u(x,y) + iv(x,y), 2 = z + iy, so
ff(z) dx= f(‘u-{- iv)(dx + :dy)
> ¥

=fudz—vdy+ifvd:r+udy
* o]
and by Green's formula

=/L(_14-u',)d:.dy“//n(u;-v;)dxdy:o

Deformation

et &, and 34 be two simple, closed, piecewise-smooth curves with 34 Iv-

ing wholly inside +; and suppose f is holomorphic in a domain containing
the region between v, and 4,. Then

f Sf(z) d= =f J{=) d=
* “»
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Example Takey={zeC: |z —-1| =2}

f 1 d-:f 1 )
N T e ,(:—2)(:4»'2) '

A

Ao
\ 1 N2/

— )) d=

Since 5 i« holomorphic inside 4 and on v, by Cauchy Coursat:
2
Now

Parametrising w = ge*, t € [0, 27]

L=
e N
= —ge! t = 2=i
.[; et K5 " a

Hence

Cauchy integral Formula

Let f be holomorphic inside and on a simple, closed piecewise-sinooth
curve ¥. Then for any point =y interior to v, we have

f(s0) = 5o Jl L6 g,

(o |
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Example Calculate \

1 e
A= ﬁfj:,;z (z—1)(z+1) o

A
Using partial fractions, we get Q J 2
—1
pefo i (O Yy

By Cauchy's integral formula:

1 et

2ri lzj=2% — i

1 & .
-_— —_—dr=e"
i |sjwz T+ 1

And so

| S0 S
I_zz—i(e —e ') =sinl

Generalized Cauchy Formula

Let f be holomorphic in an open set . Then f has infinitely many
complex derivatives in . Moreover for a simple, closed piecewise-smooth
curve ¥ C Q and any 2 lving inside 4 we have

n '
E—f(;)zlf_&.dy’
Y

FrD i J, (n—z2)""

and so

ARG AL P f 1G5 ey
_ml )

2mi ) (n—2)"
Complex Power Series

Definition. A complex power series is a series of the form

o
Za,,(: — )" =ap +ai(z — 20) +a2(z —20)°>+...

ried)

where 25 € C and a,, are complex constants.

Example
o~
(z —20)"
P
n0
In this case,
(z—z)"H! n!

i e ) e

z—2
= lim l—Ol-=0
nsoo N+ 1

Therefore 2, £=22 converges for all z € C.

nl
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Definition (Radius of convergence). There is a real number R € {[0, o]}
such that 3"  a,.(z — 20)™ converges for all = : |z — 24| < R and diverges
for all 2 : |z — ~0| > R and may or may not converge for =z : |z — 20|l = R.
Such \'allx- of R is called the radius of convergence for the power series.

Remark. If R = 0 then the power series converges only at = = 2. If R = co
the power series converges absolutely for all = € C.

For many power series the radius of convergence can be calculated according
to
R= lim |-2= |

(==)

B e b

provided either limit exists or is equal to infinity. Indeed, let us check (=)
we know that the series converges if

= e lansi(z — 30)"*" o < 'an+ll
b e Ry R T
This implies that if
2= 20| < lim |an|/lan+i]
then the power series converges.
Example Fpind R for 37, n?(2 — 20)".
2
: n
s nlﬂgo (n+1)%
= Y ooy n%(z — 2p)" is absolutely convergent for all = : |z — 24| < 1.
Taylor Expansion
Let f be holomorphic in an open set 2 and let 29 € €2. Then
S (z0)

I(2) = f(z0) + f'(Go)(z —2a) + 57— (= —20)” + ...

valid in all circles {2 €e T : |z — 20| < 7} < Q.
Definition. The expansion

£(2) = f(z0) + (o) (= — 2a) + L5 (2 — 20)% +

is called the Taylor series of f about 25. The special case in which 2 = 0

we have
J(z) = i f(nn_)!(o);"
this series is called the Maclaurin :c:i(s for f.
Examples
() f2)=¢€:26=0 = f|._o=1. So

=3 g™ R=Jm Eo oo
(i1) __;_ .n n
f(z) Z Jdzl <1 Then R=1.

n-0
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(i1i) Log(l — z). Note that
I SN = L
(Log(1 —z2)) ——1__:-——;,~
Integrating both sides we get
. - 1
Log(l —2)= : +C = — —2" 4+ C
where C = Log (1 - 0) = 0.
(iv) f(2) = 2= about 2o = i. Then
 E. 1
142 14i4+z—i
_ s 1
1+ l —(—5=3)

. 1 (..—r)
"1+-Z( a+a"

= Z(—l)";(: — iy

S (1+')¢141

where R is defined by the inequality

jz — il
141

<1or |z—il< V2

urent Expan
Let f be hotlomorphic in the anmuilus
D={z:r<|z—2|<R}, nnR>0

Then f(z) can be expressed in the form f(z) = Y0 an(z — 20)",

where () T
= n
%= et § = sy

and whose v is any simple. closed, pilecewise-smooth curve in D that
contains zp in its interjor.
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Examples
(i) Find the Laurent series at zg =0 for f(z) =1/(z—1)for =z : |z] > L.

1 1 B % |
:—1=:(1-1/:)=?Z?=2?"

This converges for [z > 1.

(ii) Find the Laurent series at 26 = 0 for f(z) = 1/2(z+2) for 0 < |z| <
2.

K | B
=25 A2
o
e B 1
1
=Zo( ™ onsz T332
me=

riti

Singularity . A point 2 is called a singularity of a complex
function f it f is not holomorphic at 24, but every neighbourhood of 2z,
contains at least one point at which f is holomorphic.

Isolated Singularity . A singularity >, of a complex function
is said to be isolated if there exists a neighbourhood of z; in which =, is
the only singularity of f.

Examples (Singularities).
(i) S(2) = 7%5.% = 1.
(i) f(z) =e'*" 20=0,
(iii) f(2) = 25720 = —2.
Definition (Pole of order m, removable and essential singularity). Suppose

a hplomorphic function f has an isolated singularity at z, and f(z) =

e @p(= — 2)™ is the Laurent expansion of f valid in some annulus

0 < {2z — 20| < R. Then
(i) If a,, = 0 for all n < 0, 26 is called a removable singularity.

(ii) Ha, = 0forn < —m where m is a fixed positive integer, buta_,, # 0,
zo is called a pole of order m.

(inn) If a,, # O for infinitely many negative n's., 2, i1s called an essential
singularity.

Examples (i) f(z) = 882, (ii) f(2) = mrbap. (i) £(z) =/~
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Theorem

A hinmction f has a pole of order m at =5 if and only if it can be written

in the form
g(=z)

(z —20)™

where g is holomorphic at 2, and g(z4) # 0.

J(z)=

f i n
Definition (Zero of order m). We say that f has a zero of order m at
20 € Cif f¥)(2)=0,k=0,1,...m — 1 and f1™)(25) £ 0.
Theorem

A holomorphic function f has a zero of order m at 2, iff it can be
written in the form f(z) = (2 — 24)™g{z) where g is holomorphic at 24
and g(zo) #= 0.

Corollary The zeros of a non-constant holomorphic function are iso-
lated. That is every zero has a neighbourhood inside of which it is the only

Zero.
Residue Theory
We have oo
f(z)= Z: an(z—20)", O<|z—20]<R

Definition (Residue). Res[f, 26] = a_;.

Theorem:

Let v © {2 :0 < |z —20] < R}, R > 0 be a simple, closed piecewise-
smooth curve that contains 2, and f is holomorphicin {2 :0 < |z — 23| <

R}. Then

1
Res[f.20] = fj(:) d=

2=i
Residue

Let f be holomorphic inside and on a simple, closed piecewise-smooth
curve v except at the singularities =3, 22, ...,2, in its interior. Then

ff(:) d= = 27.':'2 Res|f, =;]
- P

Example ¢'/* =141 4 74 ... Then

simpee a_ g = 1.
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Calculating Residues

Let
fR)=a_m(z—20)""+ -+a(z—2)""+ao+ar(z—z20) +...

Introduce g(z) = (z — 20)™ f(2).

Form=1,
g(z)=a_; +ag(z—20) + ...

Then

Res[f, z0] = zlin:xo g(z) = :l_i.n:lo(: —20) f(2)

For m = 2, then

g(z) =a_2 +a_1(z — 20) + ao(z — 20)* +

d
Resl/,z0] = a1 = qro(a)| = Jim (G = 20)*/(2)

Residues for repeated roots: Inductively for m,

Res{f,20] = Jim 125 — 50)™ ()

Examples
(1) Ewvaluate

= d=z, vy={z:|2]=1/2}

We have
1 = 1
25— 23 23(z—1)(z+1)
So three singularities: 2y = 1.2 = —1,.23 = 0, only 23 is inside ~.

m = 3, so

Res[f.0] = hm —%(::‘ - f(=))

~g B 'o((-?— n’)

—(2%F — 1) — (2)2{(z* — 1) - 2=

= hm, == _ 1)
= —1
So '
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{11) Evaluate

1 vt
f et Y=teilEl=2)

We see that
1 1
1(z) = (z4+5)(z2—=1) (z+5)(z+1)=z-
We have poles at 2 = —1, 2 = 41 inside 7, so we write

ff(;) d: = 2mi{Res[f, —1] + Reslf, 1]}

We compute

. 1
e O B L B e - e -

=mGEToes ) 12

and
i 1
Renlfs—t)=Tm (2 +-1)- e aBFE—1)
1 1
= Hlm Y
-1 {245)(=—1) S

Thus

f - 1-—-)-~(L l)_ »
Y EFB)(E=1)  T\12"8) " 12

Integrals of the Form [ F(cos®0, sin6)d6

pt 2 = e? 0 < @ < 27 We can then write

@ —i0 io —i0

s — e . WY inxkle oo - ) Rar P e =TT s
dz = te""d6, cos 6 = > : sin @ — >: - Since dz =
ie'?df) = iz df and 2~ = 1/z = e~ ' these three quantities are equivalent to

d=

do ==, 0__(~+. 1y, smo___(“.:').
Wehave
§r(ze+ge-) £
where C is the unit circle [2] = 1.
EXAMPLE

n 1

Evaluate /0 mllﬂ

Solution When we use the substitutions given in (4), the given trigonometric
integral becomes the contour integral
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I&

1| -

®

2+

Sy
C(2+4(z+2"1)) = c( =+1)’i
2z

Carrying out the algebraic simplification of the integrand then vields
4 z
iJo (22 +42+1)°

-
-

From the quadratic formula we can factor the polynomial 22 4+ 42 4+ 1 as
224 da 41 =(2—21)(2—22). where 2, = —2— V3 and 22 = -2+ V3. Thus,
the integrand can be written

> »
~ ~

(z2+4z2+ 1) (2 —2)%(z — 5)?°
Because only 2. is inside the unit circle C, we have

- ] 5 > ~,
fi- (22 +4: +1)? dz = 2mi Res(f(z), 22).

-
—

—_— im 2
Res(f(z), 22) = :lglz',d_z(z — 22)2f(2) = :‘3!!:1,‘41_: (z—21)2

-

Ny vtk 1

= |} —_— =
= 2z —21)°  OvV3

4 2 e s ’ S - __4 228 1
Hence, T‘{c(:'l-}--l:-l-l)d:27‘2’““&([(-)'-’)—7.2“'.m
and. finally. / z’_l-do— et
e = o (24 cos8)? T a3V

Integrals of the Form f:: f(x)dx

Suppose y = f(x) is a real

function that is defined and continuous on the interval |0, oc). In elementary
calculus the improper imtegral I, = fo“' J{x) dr is defined as the limit
o R
Iy = / J{z)dr = lim flx)dz. (3
0 R Jy

If the limit exists, the integral I, is said to be convergent; otherwise, it is
divergent. The improper integral [, = ffq_ f(z) dzx is defined similariy:

12=/0 f(x)dz = limf fl&)di: 2)
= e

Finally, if f is continuous on (—oo, o), then [~ f(x)dz is defined to be

J f(r)dr=[ f@ydz+ [ fx)yde =1+ I, @)

=)

provided both integrals Iy and 7 are convergent. If either one, Iy or [», is
divergent, then [~ f(x)dx is divergent. It is important to remember that
the right-hand side of (3) is not the same as
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R "
Jim [j_akf(w)d:+£ !(r)dr] = Jim [ se)d= (a)

For the integral f_‘; f(x)dxr to be convergent, the limits 1) and (2) must
exist independently of one another. But, in the event that we know (a priori)
that an improper integral [~ f(x) dr converges, we can then evaluate it by
means of the single limiting process given in (4):

g R
[ s@ydz=jgim [ s de. 5)

On the other hand, the symmetric limit in (5) may exist even though the im-
proper integral [~ f(x)dx is divergent. For example, the integral [ xdz
is divergent since limpg . . fok.rdr = limp... $+R* = oc. However, (5) gives

n

; = Tim IR 2 _
Rh_r.x; —R.rdz— ’g_l_t‘nw?[lf —(—R)*] =0. 6 )

The limit in (5). if it exists, is called the Cauchy principal value (P.V.) of
the integral and is written

-~ 4
Y. / f(x)dr = hm / flx)dze. (7 )
D S s J_R

To evaluate an integral [ f(x)dr, where the rational function f(z) =
p(x)/q(x) is continuous on (—oc, =), by residue theory we replace x by the
complex variable z and integrate the complex function f over a closed contour
C that consists of the interval [~ R, R| on the real axis and a semicircle Cg of
radius large enough to enclose all the poles of f(z2) = p(z)/g(z) in the upper

R

half-plmnc— Im(z) > 0.

we have

f f(z)dz =/ f(z)dz +/R flx)dz = Q:ii Res(f(z2),2%),
C Cn -R

ka1l

where 25, k=1, 2, . . . , n denotes poles in the upper half-plane. If we ¢
show that the integral f‘-‘n f(z)dz — 0 as R — oc, then we have

- " ”
P.V.[ ¥ f(x)dx = lim [nf(r)dx - '2m'§ Res(f(2), 2z)-
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EXAMPLE

1
E T D=0

Evaluate the Cauchy principal value of /

Solution Let f(z) = 1/(2% + 1){(z* 4+ 9). Since
(2H+1)22+9) = (z— )=+ i)z — 3i)(z + 3i).

we take C be the closed contour consisting of the interval [—R. Rl on the

r-axis and the semiarcle Cp of radius R > 3.

1
dz
f- (22 4+ 1)(224+9)

:

R
—/ : (I.r+/ - dz
r (2 +1)(22 +9) cr (22 +1)(2249)

— ,l -+ l:n
and It + Iz = 2mi [Res( f(z). 1) + Res(f(2), 3i)].
At the simple poles z = i and = = 3i we find, respectively,
: —— : . 1 1
Res{f(z), i) = o and Res(f(z), 3i) = T
s0 that L + 1. =2xi _1_.+ __l- .
. e e a8 )| 12

This last result shows that |[f:] — 0 as R — o0. and so we conclude that

mg . I, =0.

-
I

I‘I‘ .
. 1 x . 1 r
i ememe-w = " et

Cauchy's Residue Theorem:

Statement: Let D be a simply connected open subset of the complex plane, except
for a finite number of isolated singularities.

If f(z) is analytic on D except at these singularities, and y is a closed curve in D that
does not pass through any singularity, then
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'ﬁ f(z)dz = 2mi Y Res(f, z;)

where z;, are the singularities inside ~, and Res( f, z;) is the residue of [ at z.

. Residue:

[ 5]

* The residue of f at z = z is denoted by Res( f, z;).

* For a function f{z]l with a pole of order 1 at 2, the residue is given by
. " 1
Res[f_. :n] = lim. A ﬁr:ﬁ,—r[l{: - er}'“fl[zﬂ

. Applications in Engineering:

I

* Control Systems: Residue theorem is used in the analysis of linear time-invariant
systems and their transfer functions.
* Signal Processing: In the analysis of signals and systems, especially in the Laplace
transform demain.
* Electrical Engineering: Usad in the analysis of circuits with reactive componants.
5. Calculation of Residues:
* For a simple pole at z, the residue is given by Res( f, zp) = lim, . (z —
20)f(2).
* For higher-order poles, derivatives are involved in the calculation.
5. Special Cases:
* If v is a simple, positively oriented closed contour, then
fﬁ %I dz = 2mi
where zp is inside .
* The theorem can also be applied to integrals over semi-circular contours or
contours enclosing multiple singularities.
7. Conseguences:
* Simplifies the evaluation of certain definite integrals, especially those involving

trigonometric functions and rational functions.
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