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Unit IV

Limit of a complex function f(z):

Definition:
A fincrion w = (2) tends to the limit ¢ as 2 tends to a point z, aloug any path, if

o caclh posttive mbittury number « . however sinall, there conesponds a positive nunber 6.
such that

f(7) fl<c.whenever 0<|z 2,|]<3

se., ((me)<l(2)<({+=). whenever (£,~8)<z<(g+38). 272,

and we write Lt f{z)=1 .
Tz

Continuity of f(z):

A simgle valued function w = f(z) 1s said to be continuous at a pomt z=2z, 1f
Lt f(z)=16(z,).
22,

In other words:
A function f{z) 15 sard to be continuous at a pomnt zg if f{zg) exists, Lumf(z) exists and
)

Limf(z) = 1(z,).
Foedy

re.,. hnmung value of f{z) as z approaches z, coincides with the value f{zg)

A function f{z) is said to be continuous 1 any region R of the z-plane. if it is continuons at
every point of the region.

This means that, 8 function 1s said to be continuous in a domain if 1t 1s continuous at every
pomt of the domamn

A function, which is not continunous at z,, 1s known as discontinnous at z,.

This means that a function, i which f(z,) does not exist, or Limf(z) does not exist o1
toerx,

Limf(z) = £(z,). is known as discontinuous at zo.

PR

Result 1; If fiz) and g(z) are continnous function m D. Lhen their sum f ¢ g, difference

f—g. product fz. quotient f'g are all continuous m D. Continuous function of a
continuous function 1s contiiuous

Result 2: f = u + 1v 1s continuous 1f both u and v are continuous.

Derivative of f(z) (Differentiability) :
Let w={f(z)be a smgle valued function of the vanable z(=x+1y). then the
denvative or differential coefficient of w = f(z)is defined as

ﬂ:f’(z): Lt f(z+8z)—-1(z)
dz a2 oz

provided the limit exists and has the same value for all the different ways in which 8z —» 0

In other words:
A function f{z) is said to be differentiable at a point z if the It
f{z, +5z)—f(z,) i f(z)—f(z,)

Sz 2-eZy Z—Zo

(with z=2, +52)

Fz) = Lin

exists.
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The limut £'(z,) 1s known as the denvative of f(z) at z,
The above linut should be the same along any path from z to z,.
Thus, differentiability of a complex function is a stringent requirement.
Differentiation rules:

Differentiation rules of real calculus are valid in complex differentiation also.
de
1. = =0 where ¢ = complex constant

Ao, df, de
e =gty

[

3. %[cf(z)] =c

h
-
i
| »-
Reosmtnted
I
"
o
"4 )
H
g

a1 d.f

6. a. dizlf(z)l' =n[f(2)] =

dw  dw dZ

7 Chamnile —=— —=f w-{t(0)and { —g(7)

de 47 de

y-axis
h

z-plane

Remarks: Suppose P(7) 1s ftixed and Q(7 +d7)neighbonnng pomt. The pomt Q may

approach I' along any straight or curved path in the given region, 1.¢., $z may tends to zero in
dw
any manner and e may not exist. Then it hecomes a tundamental problem to determme the

»

; - dw e : :
necessary and sufficient conditions for s to exist. This fact is sertled by the following

theorem.
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Q.No.1.: Show that Ligx ‘x ‘—,— does not exist even though this function approached the
2 x +'\’

same limit along every straight line through the origmn

Sol.: Path L. Ijm.;‘”L.- = Limﬂ‘ =Lm0=0
-0 * Yould

FRE Y

-
e ur

Paib L Lim->Y . = Lim-2
v +)" -
X0

o x—‘zl;gzlo:o

Path II1. Along any straight line through ongin.

Lety =mx
2 3
B XS ’ mx . mx
Lim———=Lim=—; —r = Lim— ==0
FX ty A X'4+mMXT X 4+m

Path IV as y =mx”, then

X'y g 0T S | m

=20

= Lim - = z
=0 l+m° l+m°

and different for different values of m.
Therefore, the hmit does not exist.

Q.No.2.: Determine where the given function is continuous

: —. (b). L mside a unit circle.
1+2° z-1

(a)

How about in the complex plane.

| S . » : .
Sol.: g 1s continuous everywhere except where 1+z° =0, 1e..at z=+1.
+2°

When unit circle is considered, |z| <1, z= +i are excluded.

| : =
Thus s is continuously inside |z| =1l
+z

o L . jean
Similarly, —— 1s also continuous inside |z|=1.

R ] . 1 1 . ?
If the entire complex plane 1s considered. then both T and —— are discontinuons. at
+2°

-
z =41 and z = | respectively.

Analytic functions:

Definition:

If a single-valued function f(z) possesses a unique derivative w.r.t. z at all
points of a rogion R, thon (2) is called an analytic function.
In other words:

A function f{z) is said to be analytic at a point 2, if f is differentiable not only at
ze but at every point of some neighbourhood of z,. An analytic function is also known
as “holomorphic function™, “regular function”, “monogenic function”™.

A function f(z) is analytic in a domain if it is analytic every point of the domain.
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A point at wnich an analytic functon ceases to pessess a derivative is called a
singular point of the function
Thus, I u and v are real single-valued functions of x and y such that
da u v ov

— X > are continuous throughout a region R, then the Cauchy's-Riemann
&' oy & o ug egl y

M év o Faa ™y
uetonNs — = — and — =——,
o 2 0 o B
are both necessary and sufficien: conditions for the function f(z) —u+ivio be anahtic in

the regon R.
The denvative of fiZ) s then given by

PR Y.
x & & oy

Thus Cauchy s-Riemann eguatons (cr conditions) are used to determine whether a

complex function is analytic or ncl.

Note:

1. Iffis analytic in a domain D, then u, v satisfy C-R equations at all points in D

2. C-R conditions are necessary, but not suffcent conditions.

3. C-R conditions are sufficient if the partial derivatives are continuous, ie., u(x.y).
v(x.v) have continuous first partial derivatives and satisfy C-R equations thenf=u +

iv is anaiytic.

f analytic — C-R conditions — Continuous P.D. — Analyticity
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Entire Function:

A function which is analytic everywhere, for all z in the complex plane, is
known as entire function.
a.g., Polynomials, rational functions are entire functions, means analytic averywhere.

H: is differontiable only at 2 = 0. So, it is nowhoreo analytic.

Thus, analyticity is very stringent condition

Properties of analytic functions:
1. 17 f(z) and g(7) are analytic, then £ +g f2, 7/ g are analytic if g(7) = 0
2. Analyvtic function of an analvtic function is analvtic.

Au entire function of un entire function is enlire.

It 1 1s analytic, then it 1s contmnuons (analyvucity) = ditterennability = continuty.

ol ol

Derivative of an analytic function 1s itself analvtic.
Piooll ['=u_+iv =U+1V.

fis analync, sou, =v, .u_=-v

=
DifTerentiating wor.t. and v, we et

R ==V, orU,=V,and U, --V,.

"

~ N

re. U, Vsausly CR conditious, Hence £ 1s sualviie,
6. If [ u+av 1s analytic, then the fannly of curves wx, y) = ¢; and v(X, v) = ¢; we

mumally orthogonal. 1.¢., u — ¢, are orthogonal trajectories of v — ¢, and vice-versa.

Proot® By mimplicat differentniation of u = ¢, we get

Ju Ju Jv v ux
- . J “’ = O — Lo == a
oOx &y &x ax uy
Similarly v, + v (s Y e =N
" ex ox s
ax [(—v, | < Iy
Product of slopes — —= | ——X l_ —1 by C'I2 condintons
v Vi |

Remarks: The real and imaginary parts of an analytic function are called comjugate
functions. Thus if, £(z) = u(x. ¥)+iv(x. ¥) 1s an analytic function, then u(x. ¥) and v(x. v)

are conjugate functhions. The relation between two conjugate functions is given by C-R

equations.
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[Necessary and Sufficient conditions for the derivative of

the function f(z)]

Theoream:

The necessary and sufficient conditions for the denvative of the function

we=u(X.y)+1v(X.y) = £(2) 10 exist for all values of z in a region R are

A1 Su ov ov
(2) . - . — age comtinuous functions of x and ¥ in the region R:

ox & & oy

. fa év é&u ov
{11) = | e I .
oy oy ox

The conditions (i1) are known as Caunchy-Riemann equations or briefly C-R equations.

POLAR FORM OF CAUCHY-RIEMANN EQUATIONS

Show that the polar form of Canchy-Riemann cquations are
‘u_lév v léu
o rd0 & 1o

du léu 1 ém
Also deduce thar | == YAl
& T ToF

Proof: If (r. 0)be the co-ordmates of the point whose cartesian co-ordinates are (x, v), then
z=xliy=re"

s ive ()= e ), where uand v e now expressed s lenws of 1 uud 6.
Ditferentiating it parnally wrt rand 9 we ger

cu .év cu .V

4 | .ov )
—ti—=f(re")c" and A_—-ox—_—=f'(xc")u:’=ui ‘—:‘l-l“—
a o 8 (6 1 er
Equating real and umaginary parts, we got
cu lov 9 v l cu .
— T (1) — R e — (1)
cr rcl o rc0
which is the required polar form of Canchy-Riemann equations.
Now, ditterentiating (2) partially w. . 1. 1, we get
cu Léy Oy
—_————= ; (1)
o’ "¢ 9y
Dillerentiating (u) paatally w. i L 0, we get
' &'v
—— e — (av)
o ach

Thus usiog (1). (1) and (1v), we get

c.’"ux lf'u| | ¢'u l&‘llc.’-"\' ll:’lév”ll ll' 'E’\"_n v v
& ra e e 1 rirée) r!  ade, :
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Q-1

r(Z):x’(lﬂ)—y’(l—i)

X 4y

(z=0). f0)=0,

is continuous and the Cauchy-Riemann equations are satisfied at the origin.

yet '(0) does not exist.

(=) —-y'(1-1)

Sol.: Here f(2x2) < (z=0)
- S
-5 4 PR 5y —_ e -
()= 11 = ““: y Q-1 _ ,=x0=9) ;. ~y(1—i)]=0.
» Pa— xf+y* pomw.y . Yol =

e d

xX*€1+1)— v (1 —1]
Also Lt f(z) = Lt Fsy—y -
X X

x e

Also (0) =0 (given)

x*(1+i) ST
Lt < = ’I:_totx(l-ﬁ-ll]—o.

xT+y o x

Thus L_(‘ f(z) — £(0) when x — 0O first and then v — 0 and also vice-versa.

and y tend to zero sumultancously along the path y = oax  Then

X (1e1) =y (1-1) ' X (1+1)=-m’x* (1-1)

Lif(2)—~ Lt
z—=b Ve

x4y i “,w'),_'
X~
g ' .
.\|lo|—m (l-l)l
= Ix - =0.
—t I+m”

Hence Ll,f (2) = £(0), in whatever manuer z — 0
e
= f(z) 15 connnuous ar the ongin.

Hence 1(z) 15 contmuous tor all values of z.

3 3 3 3
- X ; e 2 2 :
Now f(z) =— ), +1 }, =u(x, y)+iv(x, y)
X“+y X'+y

Since f(0) =0 = u(0. 0)=0. and v(0, 0)=0

i ¥ ‘-. 0 — 0. 0 X
[5"] o (ot il L AL N
a‘"oo x>0 X x—0 x

O u(0, v)—u(0. 0 -V
() g o0 oy,
C.'y 0.0 y—0 y X0 y

v (%, 0)-v(0. 0 X
(ﬁ] s e O g
5-‘1100 x—0 X x40 X
Page 7
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s . v)— 0 ’
aud[ﬁ. :L(l(.o—}!.l(o_lzl_ll\-:]
6}"0.0 y-C y t-oby
o N g
‘ oy é X

Ihus, the C-R equations are satisfied at the ongin.

., B \ T % PR
L L’ ol
- Z = (x* 1y )(x 11y)

But £'(0) - Ly A =1O) _
b 2

2 I-m'+1(l+m')
If z— 0 along the path y — mx , then f(0) - ——r——.
(1+m® )(1+1m)

which assume different values as m varies. So £'(2) is not unique at (0, 0).

Thus, 1(2) is not analytic at the origin even though it is continuous and satsfies the C.R.
equations at the ongin.
Q-2 Show that

= >
[x y (X +1y)
------------- , #0
f(z) = x6+ylo Z
10. z=0
1s not analytic at the origin. even though CR equations are satisfied at the origin.
E 5 2.4
Sol.: Let z# 0 and given f(z)= i\}' THRE 6\ ) = =U+1v (say).
X" +y X'+y
3.3 2.4
XYy XYy
Here u=—; 2 By e )10'
x’+v! X’ +y
. ‘Cu n(x.0)=u(0,0 0-0
Now l—] =) b {eell) )—Ll——O.
L OX Jx=0 30 X =0 X
y=0
féu) w(0.v)=u(0,0 00
L (0.3)—u( )=I,t—=0.
\OY Jamg Y0 y ¥y
y=0

\ Oy,

=0 v
y-0 y

Page 8

( 0.y)-v(0.0
6"] el L R
x=0

0y

0-0

=0.
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[ ov ) (x,0)-(0.0 -
) g ¥(%0)-(00) ., .0-0_..
(\’l.o Xl X x-s0 X
y=-0
=W, =V, B, ==V,.

Hence. CR equations are satisfied at the ongin.

X’y e xiy* b
= : & . 10 T =)

Further £(0)= L1 f(2)-£(0) _ ,, x"+3 x®+y

z-+0 z oD =
Choose the path v = X, then

xo ’ xa \ l
f’ 0 - I.t 41

v 2ol xT4x"  x%ex Jx+ix

(1+i)x° 1 1
= ‘ 3 4 = =L. P i D .
= x(1+x*)(1+1)x  =*x(l+x') ©

=> £'(0) does not exist ar origin. => f{2) 1s not analytic at the onigin.
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Definitlon: A function f(x. v}, is said 10 be a harmonic function if it satsfies the Laplace’s
X oy

equation, 1e., 0,ie,. V=0

If f{z)=u+ivbe an analytic fanction in some region of the 7-plane, then the Canchy-

Riemann equations are satisfied,

. fu_¢v ol ov g
Lo ——m— ] ond . e n
e e ( N o ()
Differentiate (1) w. .t x and (1) w. r. L v, we get
2z I 5. (i)
~ oxov 3
& v
. ()
& oyl
. ; v v on
Adding (iii) and (iv) and assuming that ——— = ——- . we get —t—=0 (Vv
g (i) and (iv) g that— " D g ~ )
Sumlarly, by differentiating (1) w. r. L ¥y and (1) w. r. t. X and submracting, we obtamn
v &v
— =0 i
F e Oy )

Thus, both the functions u and v satisfy the Laplace’s equation in two variables. For this

reason, they are known as hammonic functions and their theory is called potential theory

Thus, a fimenon f{x. ¥). 1s saud to be a harmonic funchion 1f it satisfies the Taplace’s
&t &t

equation. i.e., —=+—=-0, i.e.. Vf -0
cx” oy

Orthogonal system: Consider the two families of curves
u(x, yv)=c, (1)
v(x. y)=c, (i)

Differentiating (1). we get

éu ©v
cu  éu dy dv ox oy ) _
B };’"&i" === as "% OF m; (say) [by C-R equations]

éy &x

‘5‘0
Similarly (11) gives -dl -_0X . m, (say)

gy W S
ﬂ'

oy =<1k e (1) mnd (1) form an onthogonal systen.
Hence every funcrion f(z)=u+iv defines rwe families of curves u(x. y)=¢, and

V(X, ¥)=c¢,, which form an orthogonal system
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Q-1
Show that an analytic function with constant modulus 1s constant,
or

Show that an analytic function canmot have a constant absolute value without
reducing to a constant.
Sol.: Let f(z) =u+v.

Since [f(z) = constant = ¢, say, then we have

w+v=c=mui+v=¢t

5!

2202w 20 and Znﬁ+2v—€1=0
au au au au .
=S U=V =0 and 0 —+v—=0 by C-R equations
x Vo o [by eq )
Elinuanating % . we get (u® 4 * ):Z‘:\' O .
Thus provided w
Simmalacly . S

= W 4+ iv 5= O .
b v

a4
= — 0 and —
o !

= .
<
Since, the four partial demnmvatnives of u and v are zero.
= The functiIons 1. VvV are constant.

=S W o i - 1V 1S also constant.
This completes the prootf’.

Is the function u(x.y)=2xy+3xy’ -2y’ harmonic (i.c.. solution of Laplace
equation)?

Sol: u, =2y+3y’, u, =0, u =2x+5xy-6y’, u_=0x-12y.
Se u, +u 7 V. lherefore uis not harmonic.

Conformal Mapping (Transformation):

Suppose two curves C, C; in the z-plane mtersect at the point P and the
comresponding curves C'and C;' mn the w-planc intersect at P'. If the angle of
intersection of the curves at P is the same as the angle of intersection of the curves at P*
i magmtnude and sense, then the transformation 1s said to be conformal ar P.

conformal mapping has rwo kinds:

A transformation. which preserves angles both i magnitude and sense between
every pawr of curves through a pomt, 1s said to conformal at the pomnt. But basically.

Page 11
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1. Conformal mapping of the first kind:

If the conformal mapping preserves angles both i magnitude and sense, then
conformal mapping 15 known as conformal mapping of the first kind.

2. Conformal mapping of the second kind (Isogonal mapping):

If the conformal mapping preserve angles only i magmtude but not m sense,
which 1s reserved, ke w —Z . where arg Z = —arg z. then conformal mapping is known

as conformal mapping of the second kind.

Remarks: Given mwo murually orthogonal one-parameter famulies of curves say
¢x.y)=c; and y(x.y)=c;. then their image curves in the w-plane ¢(u.v)=c; and

yiw. v) = c; under a conformal mapping are also mutually orthogonal . Thus, conformal

mapping preserves the property of mutual orthogonality of system of curves in the plane.

Note: Conformal mapping 1s used to map complicated regions conformally onto simpler,
standard regions such as circular disks, half planes and strips for which the boundary

value problems are casier.

Condition under which the transformation w = f(z) is conformal

Condition for Conformality:
Theorem:

A mapping w=f{z) is conformal at each point z; where f{z) is analytic and

£f(zo)=0.

Page 12
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Unit IV
Remarks:

(1). Relation (1) 1e. a'= a + ¢ shows thar the tangent at P to the curve C is rotated
through an angle & = amp {f *(2)} uader the given transformation.

(2). The relation (u1). 1.e. p= &[io %. shows that in the conformal transformation. the
lengths of arcs passing through P any direction are magmfied in the ratio p:1. where
P = [f *(z) . Thus. an infinitesimal length in the z-plane is magnified by the factor |f *(z)|
in the w-plane and consequently the infinitesimal areas are in the z-plane magnified by
the factor |f ‘(zj: in the w-plane in a conformal transformation.

(3). Jacobian of a transformation:

If waf(z). 1.6, u+ivs f(x+iy) 15 an analytic function which maps a closed
region D of the z-plane into a closed region D' of w-plane, then u and v muist sanisfy C-R
equation.

) )(u. v]_
=

Henee. 1 g confonnal aunsfonnaton. mluiesimal wacas are magnificd by the facia

&l |lau -ov

e ox | (N (oY |6 .8vl .2
o 2 =(§) *(K) =|§“§1=“’ @
&yl |ax ox

TR

¢ % -
}—"—\—] Also the cond:ton of & conformal mapping is J(E——v]# 0.
XY Xy
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Conformal Mapping by Elementary Functions:

General Linear Transformation or Linear Transformation

Gareral Lnear Transformaton or simgly lirear ransformaton cefined by the
Tuncuon
N=f(zh—az+> m
(a=0_and bt cre arbitrary complax constants) maps con‘ormally the axtendaa complex
z-plene onto the extended w-plane, since this function s analytic end £(z)=a =0 for

any z IFa=C, i) reduces tc a constant funciicn.

Soecial cases of linear transformation are:
i. Identity Transformation:

for a — 1. L — O, winch waps a poit £ outw itsell

ii. Translation:
w=2+b
for a = 1. which translates (shifts) z througk a distance [b] in the dircetion b.
Ifs=a+1y.b=b,+ib, and w=u+iv,
then the transformetion bocomes u+iw=x+:1v+b, +ib, = u=x+b, and v=v+b,.
i.e., the pomt P(x. y) m the z-plene 15 mapped onto the pomt P (x+b., y+b.) m the w-
plane. Every point in the z-plane is mapped onto w-plane mn the same way. Thus, if the w-
plane 1¢ superpesed on the z-plane. fizuwrs 1< dhuftad twough a distance gven by the
vector b.
Accordingly. thas transtormation maps a figure in the z-plane o a figure m the
w-planc of the semc saapc and size. Thus. thes transformation 15 a meic translation of the
axis and pressrves the shape and size. In particular. this transfonmation changes cucles

mlo cireles.

lii. Magnification and Rotation:

“__.IO =

for a=¢".b=0 which rotates (the radius vector of point) z through a scalar angle 6
{counter clockwise if 8>0 while clockwise if 8<0)
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Let w = cz. where ¢ 15 complex constant.
letc=pe'®, z= 1¢® snd w =Re'?. then the wansformation becomes
re't — et et — pre'®e) Ly _orand - 9-«
Thus. the trensfonmarion maps a pout P(x.3) in the z-planc onto the pomnt P'(;r. 8+ )
m = w=plane Hence this ransfonmanion consists of magnification (or conrracrion) of the
radius vector Pby p — ¢|and its rotation tarough an angle & = amp (=) -
Accordingly, it maps any figire n the 7-piane into 2 geomerrically similar figive
m Uiz w=plane [n particuley, thas Gunsfonztion ups cucles o aucles.
iv. Stretching (scaling):
W =az
for “a’ reel stretehies il > § (contacts 1 0 < u < 1) the rudius vector by fuctor "=,
Thus, the linear transformetion w — £{z) — az ~ b consists of rotetion through anzle arg

a. scaling by facror al. followed by translanon through vector b. This transformation is
used for constructing conformal mappusg of *similar” figutes
Result: Show that circles are invariant under translation, rotation and

stretching.
1.¢., Lincar transformation preserves circles 1.e.. a circle mn the z-plane under

transformation maps to a circle in the w-plane.

Some standard transformations:

Inversion and Reflection: w= g 3
!

Here, 101s convenent W ik lie we-pkae as supeiposed on 2-plaue.
% AL
Piz)

Let z=r1e'® and w = Re'? | then the transformation W = ; becomes Rel® =—¢
r

1
=R=; and ¢ = -8.

Thus. under the transformation W = ;— a point P(r, 8) m z-plane 1s mapped mto the pomt

ri(1-0).
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Consider the w-plane superposed on the z-plane. If P is (r. 6) and P, =(1.—6J. then
r

1 1
OR =~ =—=>0POR =1
A r OP A

= Pj 1s the inverse of P w.r.t. the unit circle with centre O.
3 3 . 1
Then the reflection P' of Py in the real axis represents w = P

Hence, this transformation is an inversion of z w.r.t. the unit circle 2] = 1followed by

reflection of the inverse mto the real axis.

Clearly. the function W = ; maps the intenior of the unit circle [z} = 1 onto the extenior of

the unit circle |w| = 1 and the exterior of |z| = 1onto the interior of |w|=1.

Y v
D -
vh >
e X ~ 0
C —/A B
B *
z-plane w-plane

However. the ongin z = 0 1s mapped to the point w = = . called the pomt at infimity.

Result: Prove that circles are invariant under W = L A
z

or

Show that the transformation w = % always maps circles into circles.

Transformation w = e”:

Rewntng
Re? =w=e* =" ="
Therefore R =¢™ and ¢=y (1)

i.c.. modulus of w is ¢* and argument of w is y. The line x = ¢ = constant maps onto the

circle R = ¢°,

Y

The line ¥y = ¢ maps on 10 the ray ¢=c. Thus, the region a<x<b. c<y<d in the z-
plane is mapped to the region A*B*C*D* in the w-plane bounded by the concentric
circles R=c’>and R =c* and by the rays é=c and é=d
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Note 1: Since ¢* # 0 , w= 0 1s not mapped . Thus, the ongn in w-planc 1s excluded.
Note 2: This mappingisonetooneif d-c < 2x.
Particular case: ¢ =0, d=x
Counsider the rectangular region in z-planc
asxsb, 0<y<nr (seefigure)

¥
E [+
F C
x
l r 3 e
z-plane

By(ih ¢* <sRmec*<c” and 0sé=ys=.

Thus, the rectangular region maps onto the upper half of the annulus ring ¢* <R <e®,
0< ¢ <. (scc figure)

Bilinear Transformation or Mobius Transformation:

The wansfoemation W= 22> (i)
cz+d

where a. b, ¢ and d arc complex constants and ad—=bc # 0 is called as Bilinear

rransformation or Mobins transformation or linear fracrional rransformation.

In other words. Bilincar transformation 1s the function w of a complex vanable z of the

az+b
cz+d
Bllinear transformation Is conformal for all z:

formw = f(z) =

Ditferentiating (1) w.r.t. z. we ger
o
dz  (cz+df

If ad—bc = 0. then %:—- + 0 for any z and therefore Bilinear transformation 1s conformal
for all z. 1.e.. 1t maps z-plane conformally onto the w-plane.

Thus. the condinion ad — be & Oensures thar %: = 0, 1.¢ . the transformarion is conformal

If ad—bec=0. then % =0 for any 2. Then every pomnt of the z-plane 15 crincal pomnt

and the function is not conformal
Special cases of Bilinear transformation:
For a choice of constants a. b. c. d. we ger special cases of Bilinear transformarion as
wez+b Translation
w = az Rotation
w =az+b Linear transfonmation
w = % inversion in the unit circle.

Thus B.T. can be considered as combmation of these transfonmations.
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az+b

Inverse of bilinear transformation w= a’
CZ+

Solving (1) for z. we find that mverse of the Bilinear transformation 1s
s —dw+b (“)

cw-—a

which is also a bilinear transformation.

Remarks:
d
(1), From (3). we scc that cach point in the z-planc except z-—~c- . IMaps o 3 unique

point m the w-plane. Sumilarly. (11) shows that each point in the w-plane except W = %
maps nto a unique point in the z-plane. Considening the nwo exceptional points as points
at infimty in the two planes. we can say that there 1s one to one comrespondence between
all points m the two plancs.

From (1), observe that the pomt z = — : comresponds 1o W = oo . pomt at mnfinity mn the w-
<

plane. Smmilarly from (11). the point w = = comresponds to z = o , pomnt at infimty mn the
<

z-plane.

(2). Invariant points of bilinear transformation:
If z maps mto itself in the w-plane

(i.e. w=2z). then Z-ﬁzi!’ DZw EE‘:!’,. :cz"'i-(d—a)z—b =0
cz+d cw+d

The roots of this equation (say: 2;.2Z> } are defined as the mnvanant or fixed points of the

az+b

bilinear transfonmation Z= 2
cz+d

In other words. fixed (or invanant) pomrs of function w = fiz) are points which are

mapped onto themselvesie.. w=fiz)=z.

Example:
w=z has every point a fixed point
W=z mfmiately many
1
W= — has two
z

w =z + b has no fixed pount

az+b

To obiain the fixed points of w = . solve
CZ+
| S \ 7
z= . wiich 1 a quadratic mn 2 given by
cz+d
ez’ -(a-d-b-0. (1)

az+b
cz1d’

Thie, fae roots. <ay o, B of (1) are fixed pomts of w=
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If two roots of (1) arc cqua!l then bilincar transformation 1s said to be parabelic.
The quadratic with o, p asrootsis z2° —(a+p)z+aB=0.
Tor any compiex constant y.
z2-(a+Pr~yz-vZ+aP=0
Zz—(a+p-7))-rz—ap
e, (!
z—(a=3)+y
Thus. e bl tuasfonuanons, whese Oxed pomts ¢, p ae given by

_-_'(z-ali =
-g—o:uf-ﬁ)-t-y. @)

For various volues y. (it) gives B.T. with fixed points o, p

az+b

(3) In the licear transformation W =
cz+d

. ad —bc = 0, dividing the mumerator acd

denotgosior of the gl side by ane of the fous coustuuts, we observe dud there we auly
three mdepandant constants. Hence, three cond:tsons arc requucd to dotemune a bikiccar

anstormaticn For mnstance, three distingt pomts 2.z, Z; <an b mapped o any thice

specified points w;. Wy, ws.

Cross-ratio or anharmonic ratio of four numbers:

The cross=matio or anharmon:c satio of four numbers zp. z3. z3. z: 15 the hacar rection
given by

(21 -2)23-24)

(z1-z4)z3-22)

Theorem: A bilinear transformation preserves cross-ratio of four points.
or
The cross ratio is invariant under a bilinear transformation.
Let the points z,.2,.2z;3.2, of the z-plane map onto the points w;. w,. w3. wy of

az+b

the w-plane respectively under the bilinear transformation w = a
ez +

This means that wy. w3, wi. w3 are respectively the images of z3. 23, z3. z: under the

. a az+b
bilinear transfonmmation w =
cz+d

If these powts are fimte, then from W = z*b.wehave

+d
az;+b az +b _ ad—bc
cz;+d <z, +d (czj +dlczy +d)

\\"-Wk = (l’—Zt)

Using this relation for j. k=1, 2. 3. 3. we get
(wy —wolws—wy) _ (21 —2z20z3—24)
(“’l —Wa l“’S = “’2) (23 —24 lls -z3)

Thus the cross-ratio of four points 1s invariant under bilinear transfonmarion.

This property 1s very useful in finding a bilinear ransformation.
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Determination of Bilinear Transformation:
A bilincar transformation can be uniquely determined by three given conditions.
Although four constants a. b. c. d appear 1n (1). essentially they are three ratio of three of

these constants to the fourth one.
To Mkl the joague hihuoe teasfonoation wineh maps tlace given poanis 2. sz

Z; onto tarss distinet images Wy, Wi, wi. consider w which is the :mage of 3 general point
z under th:s tranzformuancn. Now as we know the cross-ratio 13 preserved under bihinear
transformation. so the cross-ratio of the four poinis wi. wa Wi w must be squal to the
Cross-1ano of 73, 72, 73. 7 .

Hence. the unique bilinear transformation that maps tares given points z:. z>. z; onto
thrcc given mmagzcs wi. W2, Wi 1s Z1ven by

(wy —wo (w3 —w) (23 —25 K23 -2)

(ws —whwsy — \2] 1] (z; —zXz3—=z3)
Nute 1: 11 one al e ponds, say: 73— the quonen ol those 1w diillfaerences wlneh
(2y—2-0z;—2z4) (23-=z:)
(z 2z z2) (25 =)

contain 2y, is replacedby lie.
Milne's Thompson Method:

Introduction:

e Milne's Thompson method is used to find analytic functions by solving partial

differential equations.
Basic Idea:

e Given a partial differential equation involving a function f(z), Milne's Thompson
method transforms the equation into a simpler form by introducing new
variables.

Procedure:

e Choose a transformation that simplifies the differential equation. This often
involves introducing new variables or using a change of coordinates.

e Apply the chosen transformation to the given partial differential equation.

e Solve the transformed equation to find the analytic function.
4. Example:

* Consider a partial differential equation involving f(z): % — % = 0.
* Apply Milne's Thompson method to transform the equation and make it easier to

solve,
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Ex. solve it using Milne's Thompson Method

4ﬂ—|— .“li-l-:ly—ﬂ

dx? de

1. Characteristic Equation:
The characteristic equation for this ODE is obtained by substituting y — "' into the
ODE:
4m? +8m+3=0
Solve this guadratic equation to find the roots 1r and rris.
2. General Solution:
The general solution is given by:
ylx) = Cre™* + Coe™

where ('] and (s are constants determined by initial or boundary conditions.

Now, let's assume that the roots of the characteristic equationare m; = —1 and

ms = —d.

1. Specific Solution:

The specific solution is obtained by substituting the given roots into the general

solution:

y(z) = Cre * + Che **

To determine the values of ('] and (s, you would need additional information such as
initial conditions or boundary conditions.

For instance, if y(0) = 2and y'(0) = —1, you can substitute these values into the
specific solution and solve for ') and Cl.

y(0)=C,+Cs =2

y'(0)=—-C, —3C; = -1

Solve this system of equations to find C'y and (.
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