
VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page1 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Java Functional Interfaces

Functional Interface is also known as Single Abstract Method Interfaces or SAM

Interfaces. It is a new feature in Java, which helps to achieve functional programming

approach.

Example 1

@FunctionalInterface

interface sayable

{

 void say(String msg);

}

public class FunctionalInterfaceExample implements sayable

{

 public void say(String msg)

{

 System.out.println(msg);

 }

 public static void main(String[] args)

{

 FunctionalInterfaceExample fie = new FunctionalInterfaceExample();

 fie.say("Hello there");

 }

}

Test its Now

Output:

Hello there

https://compiler.javatpoint.com/opr/test.jsp?filename=FunctionalInterfaceExample

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page2 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Java Lambda Expressions

Lambda expression is a new and important feature of Java which was included in Java

SE 8. It provides a clear and concise way to represent one method interface using an

expression. It is very useful in collection library. It helps to iterate, filter and extract data

from collection.

The Lambda expression is used to provide the implementation of an interface which

has functional interface. It saves a lot of code. In case of lambda expression, we don't

need to define the method again for providing the implementation. Here, we just write

the implementation code.

Java lambda expression is treated as a function, so compiler does not create .class file.

Functional Interface

Lambda expression provides implementation of functional interface. An interface

which has only one abstract method is called functional interface. Java provides an

anotation @FunctionalInterface, which is used to declare an interface as functional

interface.

Why use Lambda Expression

1. To provide the implementation of Functional interface.

2. Less coding.

Java Lambda Expression Syntax
1. (argument-list) -> {body}

Java lambda expression is consisted of three components.

1) Argument-list: It can be empty or non-empty as well.

2) Arrow-token: It is used to link arguments-list and body of expression.

3) Body: It contains expressions and statements for lambda expression.

No Parameter Syntax

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page3 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

1. () -> {

2. //Body of no parameter lambda

3. }

One Parameter Syntax

1. (p1) -> {

2. //Body of single parameter lambda

3. }

Two Parameter Syntax

1. (p1,p2) -> {

2. //Body of multiple parameter lambda

3. }

Let's see a scenario where we are not implementing Java lambda expression. Here, we

are implementing an interface without using lambda expression.

Without Lambda Expression
interface Drawable

{

 public void draw();

}

public class LambdaExpressionExample

 {

 public static void main(String[] args)

{

 int width=10;

 //without lambda, Drawable implementation using anonymous class

 Drawable d=new Drawable()

{

 public void draw()

{

System.out.println("Drawing "+width);

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page4 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

}

 };

 d.draw();

 }

}
Test it Now

Output:

Drawing 10

Java Lambda Expression Example

Now, we are going to implement the above example with the help of Java lambda

expression.

@FunctionalInterface //It is optional

interface Drawable{

 public void draw();

}

public class LambdaExpressionExample2 {

 public static void main(String[] args) {

 int width=10;

 //with lambda

 Drawable d2=()->{

 System.out.println("Drawing "+width);

 };

 d2.draw();

 }

}
Test it Now

Output:

Drawing 10

https://compiler.javatpoint.com/opr/test.jsp?filename=LambdaExpressionExample
https://compiler.javatpoint.com/opr/test.jsp?filename=LambdaExpressionExample2

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page5 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Java Method References

Java provides a new feature called method reference in Java 8. Method reference is

used to refer method of functional interface. It is compact and easy form of lambda

expression. Each time when you are using lambda expression to just referring a

method, you can replace your lambda expression with method reference. In this

tutorial, we are explaining method reference concept in detail.

Types of Method References

There are following types of method references in java:

1. Reference to a static method.

2. Reference to an instance method.

3. Reference to a constructor.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page6 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

1) Reference to a Static Method

You can refer to static method defined in the class. Following is the syntax and example

which describe the process of referring static method in Java.

Syntax

1. ContainingClass::staticMethodName

Example 1

In the following example, we have defined a functional interface and referring a static

method to it's functional method say().

1. interface Sayable{

2. void say();

3. }

4. public class MethodReference {

5. public static void saySomething(){

6. System.out.println("Hello, this is static method.");

7. }

8. public static void main(String[] args) {

9. // Referring static method

10. Sayable sayable = MethodReference::saySomething;

11. // Calling interface method

12. sayable.say();

13. }

14. }

Test it Now

Output:

Hello, this is static method.

Java 8 Stream

https://compiler.javatpoint.com/opr/test.jsp?filename=MethodReference

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page7 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Java provides a new additional package in Java 8 called java.util.stream. This package

consists of classes, interfaces and enum to allows functional-style operations on the

elements. You can use stream by importing java.util.stream package.

Stream provides following features:

o Stream does not store elements. It simply conveys elements from a source such as a

data structure, an array, or an I/O channel, through a pipeline of computational

operations.

o Stream is functional in nature. Operations performed on a stream does not modify it's

source. For example, filtering a Stream obtained from a collection produces a new

Stream without the filtered elements, rather than removing elements from the source

collection.

o Stream is lazy and evaluates code only when required.

o The elements of a stream are only visited once during the life of a stream. Like an

Iterator, a new stream must be generated to revisit the same elements of the source.

You can use stream to filter, collect, print, and convert from one data structure to other

etc. In the following examples, we have apply various operations with the help of

stream.

Java Stream Interface Methods

Methods Description

boolean allMatch(Predicate<?

super T> predicate)

It returns all elements of this stream which match the provided

predicate. If the stream is empty then true is returned and the

predicate is not evaluated.

boolean anyMatch(Predicate<?

super T> predicate)

It returns any element of this stream that matches the

provided predicate. If the stream is empty then false is

returned and the predicate is not evaluated.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page8 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Java Default Methods

Java provides a facility to create default methods inside the interface. Methods which

are defined inside the interface and tagged with default are known as default methods.

These methods are non-abstract methods.

Java Default Method Example

In the following example, Sayable is a functional interface that contains a default and

an abstract method. The concept of default method is used to define a method with

default implementation. You can override default method also to provide more specific

implementation for the method.

Let's see a simple

1. interface Sayable{

2. // Default method

3. default void say(){

4. System.out.println("Hello, this is default method");

5. }

6. // Abstract method

7. void sayMore(String msg);

8. }

9. public class DefaultMethods implements Sayable{

10. public void sayMore(String msg){ // implementing abstract method

11. System.out.println(msg);

12. }

13. public static void main(String[] args) {

14. DefaultMethods dm = new DefaultMethods();

15. dm.say(); // calling default method

16. dm.sayMore("Work is worship"); // calling abstract method

17.

18. }

19. }

Output:is default method

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page9 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Work is worship

Static Methods inside Java 8 Interface

You can also define static methods inside the interface. Static methods are used to

define utility methods. The following example explain, how to implement static

method in interface?

1. interface Sayable{

2. // default method

3. default void say(){

4. System.out.println("Hello, this is default method");

5. }

6. // Abstract method

7. void sayMore(String msg);

8. // static method

9. static void sayLouder(String msg){

10. System.out.println(msg);

11. }

12. }

13. public class DefaultMethods implements Sayable{

14. public void sayMore(String msg){ // implementing abstract method

15. System.out.println(msg);

16. }

17. public static void main(String[] args) {

18. DefaultMethods dm = new DefaultMethods();

19. dm.say(); // calling default method

20. dm.sayMore("Work is worship"); // calling abstract method

21. Sayable.sayLouder("Helloooo..."); // calling static method

22. }

23. }

Output:

Hello there

Work is worship

Helloooo...

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page10 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Java Base64 Encode and Decode

Java provides a class Base64 to deal with encryption. You can encrypt and decrypt your

data by using provided methods. You need to import java.util.Base64 in your source

file to use its methods.

This class provides three different encoders and decoders to encrypt information at

each level. You can use these methods at the following levels.

Basic Encoding and Decoding

It uses the Base64 alphabet specified by Java in RFC 4648 and RFC 2045 for encoding

and decoding operations. The encoder does not add any line separator character. The

decoder rejects data that contains characters outside the base64 alphabet.

URL and Filename Encoding and Decoding

It uses the Base64 alphabet specified by Java in RFC 4648 for encoding and decoding

operations. The encoder does not add any line separator character. The decoder rejects

data that contains characters outside the base64 alphabet.

ADVERTISEMENT

MIME

It uses the Base64 alphabet as specified in RFC 2045 for encoding and decoding

operations. The encoded output must be represented in lines of no more than 76

characters each and uses a carriage return '\r' followed immediately by a linefeed '\n'

as the line separator. No line separator is added to the end of the encoded output. All

line separators or other characters not found in the base64 alphabet table are ignored

in decoding operation.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page11 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Nested Classes of Base64

Class Description

Base64.Decoder This class implements a decoder for decoding byte data using the Base64

encoding scheme as specified in RFC 4648 and RFC 2045.

Base64.Encoder This class implements an encoder for encoding byte data using the Base64

encoding scheme as specified in RFC 4648 and RFC 2045.

Base64 Methods

Methods Description

public static Base64.Decoder

getDecoder()

It returns a Base64.Decoder that decodes using the

Basic type base64 encoding scheme.

public static Base64.Encoder

getEncoder()

It returns a Base64.Encoder that encodes using the

Basic type base64 encoding scheme.

public static Base64.Decoder

getUrlDecoder()

It returns a Base64.Decoder that decodes using the

URL and Filename safe type base64 encoding scheme.

public static Base64.Decoder

getMimeDecoder()

It returns a Base64.Decoder that decodes using the

MIME type base64 decoding scheme.

public static Base64.Encoder

getMimeEncoder()

It Returns a Base64.Encoder that encodes using the

MIME type base64 encoding scheme.

public static Base64.Encoder

getMimeEncoder(int lineLength, byte[]

lineSeparator)

It returns a Base64.Encoder that encodes using the

MIME type base64 encoding scheme with specified

line length and line separators.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page12 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

public static Base64.Encoder

getUrlEncoder()

It returns a Base64.Encoder that encodes using the

URL and Filename safe type base64 encoding scheme.

Base64.Decoder Methods

Methods Description

public byte[]

decode(byte[] src)

It decodes all bytes from the input byte array using the Base64 encoding

scheme, writing the results into a newly-allocated output byte array. The

returned byte array is of the length of the resulting bytes.

public byte[]

decode(String src)

It decodes a Base64 encoded String into a newly-allocated byte array

using the Base64 encoding scheme.

public int decode(byte[]

src, byte[] dst)

It decodes all bytes from the input byte array using the Base64 encoding

scheme, writing the results into the given output byte array, starting at

offset 0.

public ByteBuffer

decode(ByteBuffer buffer)

It decodes all bytes from the input byte buffer using the Base64 encoding

scheme, writing the results into a newly-allocated ByteBuffer.

public InputStream

wrap(InputStream is)

It returns an input stream for decoding Base64 encoded byte stream.

Base64.Encoder Methods

Methods Description

public byte[]

encode(byte[] src)

It encodes all bytes from the specified byte array into a newly-allocated

byte array using the Base64 encoding scheme. The returned byte array is

of the length of the resulting bytes.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page13 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

public int encode(byte[]

src, byte[] dst)

It encodes all bytes from the specified byte array using the Base64

encoding scheme, writing the resulting bytes to the given output byte

array, starting at offset 0.

public String

encodeToString(byte[] src)

It encodes the specified byte array into a String using the Base64

encoding scheme.

public ByteBuffer

encode(ByteBuffer buffer)

It encodes all remaining bytes from the specified byte buffer into a newly-

allocated ByteBuffer using the Base64 encoding scheme. Upon return, the

source buffer's position will be updated to its limit; its limit will not have

been changed. The returned output buffer's position will be zero and its

limit will be the number of resulting encoded bytes.

public OutputStream

wrap(OutputStream os)

It wraps an output stream for encoding byte data using the Base64

encoding scheme.

public Base64.Encoder

withoutPadding()

It returns an encoder instance that encodes equivalently to this one, but

without adding any padding character at the end of the encoded byte

data.

Java Base64 Example: Basic Encoding and Decoding

1. import java.util.Base64;

2. publicclass Base64BasicEncryptionExample {

3. publicstaticvoid main(String[] args) {

4. // Getting encoder

5. Base64.Encoder encoder = Base64.getEncoder();

6. // Creating byte array

7. bytebyteArr[] = {1,2};

8. // encoding byte array

9. bytebyteArr2[] = encoder.encode(byteArr);

10. System.out.println("Encoded byte array: "+byteArr2);

11. bytebyteArr3[] = newbyte[5]; // Make sure it has enough size to

store copied bytes

12. intx = encoder.encode(byteArr,byteArr3); // Returns number of bytes written

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page14 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

13. System.out.println("Encoded byte array written to another array: "+byteAr

r3);

14. System.out.println("Number of bytes written: "+x);

15.

16. // Encoding string

17. String str = encoder.encodeToString("JavaTpoint".getBytes());

18. System.out.println("Encoded string: "+str);

19. // Getting decoder

20. Base64.Decoder decoder = Base64.getDecoder();

21. // Decoding string

22. String dStr = new String(decoder.decode(str));

23. System.out.println("Decoded string: "+dStr);

24. }

25. }

Output:

Encoded byte array: [B@6bc7c054

Encoded byte array written to another array: [B@232204a1

Number of bytes written: 4

Encoded string: SmF2YVRwb2ludA==

Decoded string: JavaTpoint

Java For-each Loop | Enhanced For Loop

The Java for-each loop or enhanced for loop is introduced since J2SE 5.0. It provides

an alternative approach to traverse the array or collection in Java. It is mainly used to

traverse the array or collection elements. The advantage of the for-each loop is that it

eliminates the possibility of bugs and makes the code more readable. It is known as

the for-each loop because it traverses each element one by one.

The drawback of the enhanced for loop is that it cannot traverse the elements in

reverse order. Here, you do not have the option to skip any element because it does

not work on an index basis. Moreover, you cannot traverse the odd or even elements

only.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page15 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

But, it is recommended to use the Java for-each loop for traversing the elements of

array and collection because it makes the code readable.

Advantages
ADVERTISEMENT

o It makes the code more readable.

o It eliminates the possibility of programming errors.

Syntax

The syntax of Java for-each loop consists of data_type with the variable followed by a

colon (:), then array or collection.

1. for(data_type variable : array | collection){

2. //body of for-each loop

3. }

How it works?

The Java for-each loop traverses the array or collection until the last element. For each

element, it stores the element in the variable and executes the body of the for-each

loop.

For-each loop Example: Traversing the array elements

1. //An example of Java for-each loop

2. class ForEachExample1{

3. public static void main(String args[]){

4. //declaring an array

5. int arr[]={12,13,14,44};

6. //traversing the array with for-each loop

7. for(int i:arr){

8. System.out.println(i);

9. }

10. }

11. }

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page16 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

12.
Test it Now

Output:

12

12

14

44

Let us see another of Java for-each loop where we are going to total the elements.

1. class ForEachExample1{

2. public static void main(String args[]){

3. int arr[]={12,13,14,44};

4. int total=0;

5. for(int i:arr){

6. total=total+i;

7. }

8. System.out.println("Total: "+total);

9. }

10. }

Output:

Total: 83

The try-with-resources statement

In Java, the try-with-resources statement is a try statement that declares one or more

resources. The resource is as an object that must be closed after finishing the program.

The try-with-resources statement ensures that each resource is closed at the end of

the statement execution.

You can pass any object that implements java.lang.AutoCloseable, which includes all

objects which implement java.io.Closeable.

https://www.javatpoint.com/opr/test.jsp?filename=ForEachExample1

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page17 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

The following example writes a string into a file. It uses an instance of FileOutputStream

to write data into the file. FileOutputStream is a resource that must be closed after the

program is finished with it. So, in this example, closing of resource is done by itself try.

Try-with-resources Example 1
import java.io.FileOutputStream;

public class TryWithResources {

public static void main(String args[]){

 // Using try-with-resources

try(FileOutputStream fileOutputStream =newFileOutputStream("/java7-new-

features/src/abc.txt")){

String msg = "Welcome to javaTpoint!";

byte byteArray[] = msg.getBytes(); //converting string into byte array

fileOutputStream.write(byteArray);

System.out.println("Message written to file successfuly!");

}catch(Exception exception){

 System.out.println(exception);

}

}

}

Output:

Message written to file successfuly!

Output of file

Welcome to javaTpoint!

Java Annotations

Java Annotation is a tag that represents the metadata i.e. attached with class,

interface, methods or fields to indicate some additional information which can be used

by java compiler and JVM.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page18 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Annotations in Java are used to provide additional information, so it is an alternative

option for XML and Java marker interfaces.

First, we will learn some built-in annotations then we will move on creating and using

custom annotations.

Built-In Java Annotations

There are several built-in annotations in Java. Some annotations are applied to Java

code and some to other annotations.

Built-In Java Annotations used in Java code

o @Override

o @SuppressWarnings

o @Deprecated

Built-In Java Annotations used in other annotations

o @Target

o @Retention

o @Inherited

o @Documented

Understanding Built-In Annotations

Let's understand the built-in annotations first.

@Override

@Override annotation assures that the subclass method is overriding the parent class

method. If it is not so, compile time error occurs.

Sometimes, we does the silly mistake such as spelling mistakes etc. So, it is better to

mark @Override annotation that provides assurity that method is overridden.

class Animal{

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page19 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

void eatSomething(){System.out.println("eating something");}

}

class Dog extends Animal{

@Override

void eatsomething(){System.out.println("eating foods");}//should be eatSomet

hing

}

class TestAnnotation1{

public static void main(String args[]){

Animal a=new Dog();

a.eatSomething();

}}
Test it Now

Output:Comple Time Error

@SuppressWarnings

@SuppressWarnings annotation: is used to suppress warnings issued by the compiler.

import java.util.*;

class TestAnnotation2

{

@SuppressWarnings("unchecked")

public static void main(String args[])

{

ArrayList list=new ArrayList();

list.add("sonoo");

list.add("vimal");

list.add("ratan");

for(Object obj:list)

System.out.println(obj);

https://www.javatpoint.com/opr/test.jsp?filename=TestAnnotation1

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page20 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

}

}
Test it Now

Now no warning at compile time.

If you remove the @SuppressWarnings("unchecked") annotation, it will show warning

at compile time because we are using non-generic collection.

@Deprecated

@Deprecated annoation marks that this method is deprecated so compiler prints

warning. It informs user that it may be removed in the future versions. So, it is better

not to use such methods.

class A

{

void m()

{

System.out.println("hello m");

}

@Deprecated

void n()

{

System.out.println("hello n");

}

}

class TestAnnotation3

{

public static void main(String args[])

{

A a=new A();

a.n();

https://www.javatpoint.com/opr/test.jsp?filename=TestAnnotation2

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page21 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

}

}
Test it Now

At Compile Time:
Note: Test.java uses or overrides a deprecated API.

Note: Recompile with -Xlint:deprecation for details.

At Runtime:
hello n

Java Custom Annotations

Java Custom annotations or Java User-defined annotations are easy to create and

use. The @interface element is used to declare an annotation. For example:

1. @interface MyAnnotation{}

Here, MyAnnotation is the custom annotation name.

Points to remember for java custom annotation signature

There are few points that should be remembered by the programmer.

1. Method should not have any throws clauses

2. Method should return one of the following: primitive data types, String, Class, enum or

array of these data types.

3. Method should not have any parameter.

4. We should attach @ just before interface keyword to define annotation.

5. It may assign a default value to the method.

Types of Annotation

There are three types of annotations.

1. Marker Annotation

2. Single-Value Annotation

https://www.javatpoint.com/opr/test.jsp?filename=TestAnnotation3

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page22 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

3. Multi-Value Annotation

1) Marker Annotation

An annotation that has no method, is called marker annotation. For example:

1. @interface MyAnnotation{}

The @Override and @Deprecated are marker annotations.

2) Single-Value Annotation

An annotation that has one method, is called single-value annotation. For example:

1. @interface MyAnnotation{

2. int value();

3. }

We can provide the default value also. For example:

1. @interface MyAnnotation{

2. int value() default 0;

3. }

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page23 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

How to apply Single-Value Annotation

Let's see the code to apply the single value annotation.

1. @MyAnnotation(value=10)

The value can be anything.

3) Multi-Value Annotation

An annotation that has more than one method, is called Multi-Value annotation. For

example:

1. @interface MyAnnotation{

2. int value1();

3. String value2();

4. String value3();

5. }

6. }

We can provide the default value also. For example:

1. @interface MyAnnotation{

2. int value1() default 1;

3. String value2() default "";

4. String value3() default "xyz";

5. }

How to apply Multi-Value Annotation

Let's see the code to apply the multi-value annotation.

1. @MyAnnotation(value1=10,value2="Arun Kumar",value3="Ghaziabad")

Built-in Annotations used in custom annotations
in java

o @Target

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page24 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

o @Retention

o @Inherited

@Doc ava 9 Module System

Java Module System is a major change in Java 9 version. Java added this feature to

collect Java packages and code into a single unit called module.

In earlier versions of Java, there was no concept of module to create modular Java

applications, that why size of application increased and difficult to move around. Even

JDK itself was too heavy in size, in Java 8, rt.jar file size is around 64MB.

To deal with situation, Java 9 restructured JDK into set of modules so that we can

use only required module for our project.

Apart from JDK, Java also allows us to create our own modules so that we can develop

module based application.

The module system includes various tools and options that are given below.

ADVERTISEMENT

ADVERTISEMENT

o Includes various options to the Java tools javac, jlink and java where we can specify

module paths that locates to the location of module.

o Modular JAR file is introduced. This JAR contains module-info.class file in its root folder.

o JMOD format is introduced, which is a packaging format similar to JAR except it can

include native code and configuration files.

o The JDK and JRE both are reconstructed to accommodate modules. It improves

performance, security and maintainability.

o Java defines a new URI scheme for naming modules, classes and resources.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page25 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Java 9 Modularized JDK

Java 9 Module

Module is a collection of Java programs or softwares. To describe a module, a Java

file module-info.java is required. This file also known as module descriptor and

defines the following

o Module name

o What does it export

o What does it require

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page26 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Module Name

It is a name of module and should follow the reverse-domain-pattern. Like we name

packages, e.g. com.javatpoint.

How to create Java module

Creating Java module required the following steps.

o Create a directory structure

o Create a module declarator

o Java source code

Create a Directory Structure

To create module, it is recommended to follow given directory structure, it is same as

reverse-domain-pattern, we do to create packages / project-structure in Java.

Note: The name of the directory containing a module's sources should be equal to

the name of the module, e.g. com.javatpoint.

Create a file module-info.java, inside this file, declare a module by

using module identifier and provide module name same as the directory name that

contains it. In our case, our directory name is com.javatpoint.

1. module com.javatpoint{

2.

3. }

Leave module body empty, if it does not has any module dependency. Save this file

inside src/com.javatpoint with module-info.java name.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page27 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Java Source Code

Now, create a Java file to compile and execute module. In our example, we have

a Hello.java file that contains the following code.

1. class Hello{

2. public static void main(String[] args){

3. System.out.println("Hello from the Java module");

4. }

5. }

Save this file inside src/com.javatpoint/com/javatpoint/ with Hello.java name.

Compile Java Module

To compile the module use the following command.

1. javac -d mods --module-source-path src/ --module com.javatpoint

After compiling, it will create a new directory that contains the following structure.

Now, we have a compiled module that can be just run.

Run Module

To run the compiled module, use the following command.

1. java --module-path mods/ --module com.javatpoint/com.javatpoint.Hello

Output:

Hello from the Java module

Well, we have successfully created, compiled and executed Java module.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page28 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Look inside compiled Module Descriptor

To see the compiled module descriptor use the following command.

1. javap mods/com.javatpoint/module-info.class

This command will show the following code to the console.

1. Compiled from "module-info.java"

2. module com.javatpoint {

3. requires java.base;

4. }

See, we created an empty module but it contains a java.base module. Why? Because

all Java modules are linked to java.base module and it is default module.

o umented

Java Anonymous inner class

Java anonymous inner class is an inner class without a name and for which only a single

object is created. An anonymous inner class can be useful when making an instance of

an object with certain "extras" such as overloading methods of a class or interface,

without having to actually subclass a class.

In simple words, a class that has no name is known as an anonymous inner class in

Java. It should be used if you have to override a method of class or interface. Java

Anonymous inner class can be created in two ways:

1. Class (may be abstract or concrete).

2. Interface

Java anonymous inner class example using class

TestAnonymousInner.java

1. abstract class Person{

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page29 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

2. abstract void eat();

3. }

4. class TestAnonymousInner{

5. public static void main(String args[]){

6. Person p=new Person(){

7. void eat(){System.out.println("nice fruits");}

8. };

9. p.eat();

10. }

11. }

Java Switch Statement

The Java switch statement executes one statement from multiple conditions. It is like if-

else-if ladder statement. The switch statement works with byte, short, int, long, enum

types, String and some wrapper types like Byte, Short, Int, and Long. Since Java 7, you

can use strings in the switch statement.

In other words, the switch statement tests the equality of a variable against multiple

values.

Points to Remember
ADVERTISEMENT

o There can be one or N number of case values for a switch expression.

o The case value must be of switch expression type only. The case value must be literal

or constant. It doesn't allow variables.

o The case values must be unique. In case of duplicate value, it renders compile-time

error.

o The Java switch expression must be of byte, short, int, long (with its Wrapper

type), enums and string.

o Each case statement can have a break statement which is optional. When control

reaches to the break statement, it jumps the control after the switch expression. If a

break statement is not found, it executes the next case.

https://www.javatpoint.com/java-if-else
https://www.javatpoint.com/java-if-else
https://www.javatpoint.com/java-string
https://www.javatpoint.com/java-variables
https://www.javatpoint.com/java-switch
https://www.javatpoint.com/java-break

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page30 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

o The case value can have a default label which is optional.

Syntax:

1. switch(expression){

2. case value1:

3. //code to be executed;

4. break; //optional

5. case value2:

6. //code to be executed;

7. break; //optional

8.

9.

10. default:

11. code to be executed if all cases are not matched;

12. }

Flowchart of Switch Statement

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page31 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Example:

SwitchExample.java

1. public class SwitchExample {

2. public static void main(String[] args) {

3. //Declaring a variable for switch expression

4. int number=20;

5. //Switch expression

6. switch(number){

7. //Case statements

8. case 10: System.out.println("10");

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page32 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

9. break;

10. case 20: System.out.println("20");

11. break;

12. case 30: System.out.println("30");

13. break;

14. //Default case statement

15. default:System.out.println("Not in 10, 20 or 30");

16. }

17. }

18. }
Test it Now

Output:

20

Finding Month Example:

SwitchMonthExample.javaHTML

1. //Java Program to demonstrate the example of Switch statement

2. //where we are printing month name for the given number

3. public class SwitchMonthExample {

4. public static void main(String[] args) {

5. //Specifying month number

6. int month=7;

7. String monthString="";

8. //Switch statement

9. switch(month){

10. //case statements within the switch block

11. case 1: monthString="1 - January";

12. break;

13. case 2: monthString="2 - February";

14. break;

15. case 3: monthString="3 - March";

16. break;

https://compiler.javatpoint.com/opr/test.jsp?filename=SwitchExample

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page33 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

17. case 4: monthString="4 - April";

18. break;

19. case 5: monthString="5 - May";

20. break;

21. case 6: monthString="6 - June";

22. break;

23. case 7: monthString="7 - July";

24. break;

25. case 8: monthString="8 - August";

26. break;

27. case 9: monthString="9 - September";

28. break;

29. case 10: monthString="10 - October";

30. break;

31. case 11: monthString="11 - November";

32. break;

33. case 12: monthString="12 - December";

34. break;

35. default:System.out.println("Invalid Month!");

36. }

37. //Printing month of the given number

38. System.out.println(monthString);

39. }

40. }
Test it Now

Output:

7 - July

Java Thread yield() method

The yield() method of thread class causes the currently executing thread object to

temporarily pause and allow other threads to execute.

https://compiler.javatpoint.com/opr/test.jsp?filename=SwitchMonthExample

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page34 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Syntax
1. public static void yield()

Return

This method does not return any value.

Example
1. public class JavaYieldExp extends Thread

2. {

3. public void run()

4. {

5. for (int i=0; i<3 ; i++)

6. System.out.println(Thread.currentThread().getName() + " in control");

7. }

8. public static void main(String[]args)

9. {

10. JavaYieldExp t1 = new JavaYieldExp();

11. JavaYieldExp t2 = new JavaYieldExp();

12. // this will call run() method

13. t1.start();

14. t2.start();

15. for (int i=0; i<3; i++)

16. {

17. // Control passes to child thread

18. t1.yield();

19. System.out.println(Thread.currentThread().getName() + " in control");

20. }

21. }

22. }
Test it Now

Output:

main in control

main in control

main in control

Thread-0 in control

https://compiler.javatpoint.com/opr/test.jsp?filename=JavaYieldExp

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page35 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Thread-0 in control

Thread-0 in control

Thread-1 in control

Thread-1 in control

Thread-1 in control

Ü

ResultSet interface

The object of ResultSet maintains a cursor pointing to a row of a table. Initially, cursor

points to before the first row.

By default, ResultSet object can be moved forward only and it is not updatable.

But we can make this object to move forward and backward direction by passing either

TYPE_SCROLL_INSENSITIVE or TYPE_SCROLL_SENSITIVE in createStatement(int,int)

method as well as we can make this object as updatable by:

1. Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

2. ResultSet.CONCUR_UPDATABLE);

Commonly used methods of ResultSet interface

1) public boolean next(): is used to move the cursor to the one row next from the

current position.

2) public boolean previous(): is used to move the cursor to the one row previous from

the current position.

3) public boolean first(): is used to move the cursor to the first row in result set

object.

4) public boolean last(): is used to move the cursor to the last row in result set

object.

5) public boolean absolute(int

row):

is used to move the cursor to the specified row number

in the ResultSet object.

6) public boolean relative(int

row):

is used to move the cursor to the relative row number in

the ResultSet object, it may be positive or negative.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page36 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

7) public int getInt(int

columnIndex):

is used to return the data of specified column index of

the current row as int.

8) public int getInt(String

columnName):

is used to return the data of specified column name of

the current row as int.

9) public String getString(int

columnIndex):

is used to return the data of specified column index of

the current row as String.

10) public String

getString(String columnName):

is used to return the data of specified column name of

the current row as String.

Example of Scrollable ResultSet

Let’s see the simple example of ResultSet interface to retrieve the data of 3rd row.

1. import java.sql.*;

2. class FetchRecord{

3. public static void main(String args[])throws Exception{

4.

5. Class.forName("oracle.jdbc.driver.OracleDriver");

6. Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe",

"system","oracle");

7. Statement stmt=con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,Resul

tSet.CONCUR_UPDATABLE);

8. ResultSet rs=stmt.executeQuery("select * from emp765");

9.

10. //getting the record of 3rd row

11. rs.absolute(3);

12. System.out.println(rs.getString(1)+" "+rs.getString(2)+" "+rs.getString(3));

13.

14. con.close();

15. }}

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page37 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

3 Sealed Classes
Sealed classes and interfaces restrict which other classes or interfaces may extend or

implement them.

For background information about sealed classes and interfaces, see JEP 409.

One of the primary purposes of inheritance is code reuse: When you want to create a

new class and there is already a class that includes some of the code that you want,

you can derive your new class from the existing class. In doing this, you can reuse the

fields and methods of the existing class without having to write (and debug) them

yourself.

However, what if you want to model the various possibilities that exist in a domain by

defining its entities and determining how these entities should relate to each other?

For example, you're working on a graphics library. You want to determine how your

library should handle common geometric primitives like circles and squares. You've

created a Shape class that these geometric primitives can extend. However, you're not

interested in allowing any arbitrary class to extend Shape; you don't want clients of

your library declaring any further primitives. By sealing a class, you can specify which

classes are permitted to extend it and prevent any other arbitrary class from doing

so.

Declaring Sealed Classes

To seal a class, add the sealed modifier to its declaration. Then, after

any extends and implements clauses, add the permits clause. This clause specifies the

classes that may extend the sealed class.

For example, the following declaration of Shape specifies three permitted

subclasses, Circle, Square, and Rectangle:

Figure 3-1 Shape.java

Copy

public sealed class Shape

 permits Circle, Square, Rectangle {

}

Define the following three permitted subclasses, Circle, Square, and Rectangle, in the

same module or in the same package as the sealed class:

Figure 3-2 Circle.java

https://openjdk.java.net/jeps/409

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page38 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Copy

public final class Circle extends Shape {

 public float radius;

}

Figure 3-3 Square.java

Square is a non-sealed class. This type of class is explained in Constraints on Permitted

Subclasses.

Copy

public non-sealed class Square extends Shape {

 public double side;

}

Figure 3-4 Rectangle.java

Copy

public sealed class Rectangle extends Shape permits FilledRectangle {

 public double length, width;

}

Rectangle has a further subclass, FilledRectangle:

Figure 3-5 FilledRectangle.java

Copy

public final class FilledRectangle extends Rectangle {

 public int red, green, blue;

}

Alternatively, you can define permitted subclasses in the same file as the sealed class.

If you do so, then you can omit the permits clause:

Copy

package com.example.geometry;

public sealed class Figure

 // The permits clause has been omitted

 // as its permitted classes have been

 // defined in the same file.

{ }

final class Circle extends Figure {

 float radius;

}

non-sealed class Square extends Figure {

 float side;

https://docs.oracle.com/en/java/javase/17/language/sealed-classes-and-interfaces.html#GUID-0C709461-CC33-419A-82BF-61461336E65F__CONSTRAINTS-ON-PERMITTED-SUBCLASSES
https://docs.oracle.com/en/java/javase/17/language/sealed-classes-and-interfaces.html#GUID-0C709461-CC33-419A-82BF-61461336E65F__CONSTRAINTS-ON-PERMITTED-SUBCLASSES

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit- 3 Java New Features:

Page39 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

}

sealed class Rectangle extends Figure {

 float length, width;

}

final class FilledRectangle extends Rectangle {

 int red, green, blue;

}

