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Regular Expression 
o The language accepted by finite automata can be easily described by simple 

expressions called Regular Expressions. It is the most effective way to 

represent any language. 

o The languages accepted by some regular expressions are referred to as Regular 

languages. 

o A regular expression can also be described as a sequence of pattern that defines 

a string. 

o Regular expressions are used to match character combinations in strings. 

String searching algorithm used this pattern to find the operations on a string. 

For instance: 

In a regular expression, x* means zero or more occurrence of x.  

 It can generate {e, x, xx, xxx, xxxx, .....} 

In a regular expression, x+ means one or more occurrence of x. 

 It can generate {x, xx, xxx, xxxx, .....} 
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Operations on Regular Language 

The various operations on regular language are: 

Union: If L and M are two regular languages then their union L U M is also a union. 

    L U M = {s | s is in L or s is in M}   

Intersection: If L and M are two regular languages then their intersection is also an 

intersection. 

     L ⋂ M = {st | s is in L and t is in M}   

Kleen closure: If L is a regular language, then its Kleen closure L1* will also be a regular 

language. 

    L* = Zero or more occurrence of language L.   

Example: 

Write the regular expression for the language accepting all the string containing any 

number of a's and b's. 

The regular expression will be: 

R.E. = (a + b)*   

This will give the set as L = {ε, a, aa, b, bb, ab, ba, aba, bab, .....},  

any combination of a and b. 

The (a + b)* shows any combination with a and b even a null string. 
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Example: 

Write the regular expression for the language accepting all the string which are starting 

with 1 and ending with 0, over ∑ = {0, 1}. 

Solution: 

In a regular expression, the first symbol should be 1, and the last symbol should be 0. The 

R.E. is as follows: 

R = 1 (0+1)* 0   

 

Example : 

Write the regular expression for the language starting with a but not having consecutive 

b's. 

Solution: The regular expression has to be built for the language: 

L = {a, aba, aab, aba, aaa, abab, .....}   

The regular expression for the above language is: 

R = {a + ab}*   

 

Conversion of RE to FA 
 

To convert the RE to FA, we are going to use a method called the subset method. This 

method is used to obtain FA from the given regular expression. This method is given 

below: 

Step 1: Design a transition diagram for given regular expression, using NFA with ε moves. 

Step 2: Convert this NFA with ε to NFA without ε. 

Step 3: Convert the obtained NFA to equivalent DFA. 
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Example 1: 

Design a FA from given regular expression 10 + (0 + 11)0* 1. 

Solution: First we will construct the transition diagram for a given regular expression. 

Step 1: 

 

Step 2: 

 

Step 3: 
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Step 4: 

 

 

 

Step 5: 

 

 

 

 

Now we have got NFA without ε. Now we will convert it into required DFA for that, we will 

first write a transition table for this NFA. 
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State 0 1 

→q0 q3 {q1, q2} 

q1 qf ϕ 

q2 ϕ q3 

q3 q3 qf 

*qf ϕ ϕ 

 

The equivalent DFA will be: 

 

State 0 1 

→[q0] [q3] [q1, q2] 

[q1] [qf] ϕ 

[q2] ϕ [q3] 

[q3] [q3] [qf] 

[q1, q2] [qf] [qf] 

*[qf] ϕ Φ 
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Arden's Theorem 
 

The Arden's Theorem is useful for checking the equivalence of two regular expressions as 

well as in the conversion of DFA to a regular expression. 

Let us see its use in the conversion of DFA to a regular expression. 

Following algorithm is used to build the regular expression form given DFA. 

1. Let q1 be the initial state. 

2. There are q2, q3, q4 ....qn number of states. The final state may be some q j where j<= 

n. 

3. Let αji represents the transition from q j to qi. 

4. Calculate qi such that 
   qi =   αji  *   qj 

If qj is a start state then we have: 
  qi = αji *  qj + ε 

5. Similarly, compute the final state which ultimately gives the regular expression 'r'. 

 

Example: 

Construct the regular expression for the given DFA 
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q1 = q1 0 + ε  

Since q1 is the start state, so ε will be added, and the input 0 is coming to q1 from q1 

hence we write 

State = source state of input × input coming to it 

Similarly, 

q2 = q1 1 + q2 1 

q3 = q2 0 + q3 (0+1) 

Since the final states are q1 and q2, we are interested in solving q1 and q2 only. Let us see 

q1 first 

q1 =  q1 0 + ε 

We can re-write it as 

q1 = ε + q1 0 

Which is similar to R = Q + RP, and gets reduced to R = OP*. 

Assuming R = q1, Q = ε, P = 0 

We get 

q1 = ε.(0)* 

q1 = 0*    (ε.R*= R*) 

Substituting the value into q2, we will get 

q2 = 0* 1 + q2 1 

q2 = 0* 1 (1)*   (R = Q + RP  →  Q P*) 

 

The regular expression is given by 

r = q1 + q2 

= 0* + 0* 1.1* 

r = 0* + 0* 1+    (1.1* = 1+) 
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Pumping lemma for Regular languages 

• It gives a method for pumping (generating) many substrings from a given string. 

• In other words, we say it provides means to break a given long input string into several 

substrings. 

• Lt gives necessary condition(s) to prove a set of strings is not regular. 
ADVERTISEMENT 

Theorem 

For any regular language L, there exists an integer P, such that for all w in L 

|w|>=P 

We can break w into three strings, w=xyz such that. 

(1)lxyl < P 

(2)lyl > 1 

(3)for all k>= 0: the string xykz is also in L 

Application of pumping lemma 

Pumping lemma is to be applied to show that certain languages are not regular. 

It should never be used to show a language is regular. 

• If L is regular, it satisfies the Pumping lemma. 

• If L does not satisfy the Pumping Lemma, it is not regular. 

Steps to prove that a language is not regular by using PLare as follows− 

• step 1 − We have to assume that L is regular 

• step 2 − So, the pumping lemma should hold for L. 
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• step 3 − It has to have a pumping length (say P). 

• step 4 − All strings longer that P can be pumped |w|>=p. 

• step 5 − Now find a string 'w' in L such that |w|>=P  

• step 6 − Divide w into xyz. 

• step 7 − Show that xyiz ∉ L for some i. 

• step 8 − Then consider all ways that w can be divided into xyz. 

• step 9 − Show that none of these can satisfy all the 3 pumping conditions at same time. 

• step 10 − w cannot be pumped = CONTRADICTION. 

 

Example of Proof Idea of the Pumping 
Lemma[3] [top] 

The integer p associated with the pumping lemma is just the number 

of states a DFA that recognizes the regular language in question. 

 

               a         b         c 

    ---> [q0] ---> [q1] ---> [q2] ---> [[q3]] 

                    ^                    | 

                    |                    | 

                    +--------------------+ 

                              a 

 

    p = 4 

 

    So we need a string of length at least 4 

 

    w = abcabc is accepted and has length 6 >= 4. 

 

    The first state that is repeated when w is input to this DFA 

    is  q1.  

 

    x = string up to the first occurrence of repeated state q1 

    y = string after x up to the second occurence of q1 

 

    So x = a and y = bca which means z = bc 

 

    w = |a|bca|bc| 

         x  y  z 

 

   Pumping lemma says these string are also in the language 

 

   w0 = xy0z = xz = a bc 

   w1 = xy1z = xyz = a bca bc 

   w2 = xy2z = xyyz = a bca bca bc 

                       

 

         

https://condor.depaul.edu/glancast/444class/docs/slides/Oct09/slide3.html
https://condor.depaul.edu/glancast/444class/docs/lecOct09.html#contents
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Example 1 Using the Pumping 
Lemma[4] [top] 

   L = { aibaj | 0 <= i < j } 

Proof is by contradiction, using the pumping lemma to get the 

contradiction. 

Assume L is regular and let p be the constant given by the pumping 

lemma. 

The string w = apbap+1 is in L and has length > p. 

By the pumping lemma w = xyz with |xy| <= p and |y| > 0. 

But this means the prefix xy must come before the 'b' and consist 

only of a's. 

So this means y consists of 1 or more a's (x might be empty). 

By the pumping lemma, w2 = xy2z must also be in L, but the 
number of a's before the b in w2 must be at least p + 1, while the 

number of a's after b is still p + 1. 

But this contradicts the condition for w2 being in L and so the 

assumption that L is regular is false. 

Example 2 Using the Pumping 

Lemma[5] [top] 

   L = { aibaj | i >  j >= 0 } 

Proof is by contradiction again, using the pumping lemma to get the 

contradiction, but has to work slightly differently. 

Adding more y's will not work because now the condition is i > j., 

the leading a's are greater in number than the ones after the b. 

Assume L is regular and let p be the constant given by the pumping 

lemma. 

https://condor.depaul.edu/glancast/444class/docs/slides/Oct09/slide4.html
https://condor.depaul.edu/glancast/444class/docs/lecOct09.html#contents
https://condor.depaul.edu/glancast/444class/docs/slides/Oct09/slide5.html
https://condor.depaul.edu/glancast/444class/docs/lecOct09.html#contents
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The string w = ap+1bap is in L and has length > p. 

By the pumping lemma w = xyz with |xy| <= p and |y| > 0. 

But this again means the prefix xy must come before the 'b' and 

consist only of a's. 

So this means y consists of 1 or more a's (x might be empty). 

By the pumping lemma, w0 = xz must also be in L, but the number 

of a's before the b in w0 must be no more than p since we have 

removed at least 1 a from w to get w0. But the number of a's after b 

in w0 is still p. 

But this contradicts the condition for w0 being in L and so the 

assumption that L is regular is false. 

 

 

 


