UNIT-I: Introduction

Table of Content

1) Regular Expression

- 2) Examples of Regular Expression
- 3) Conversion: Regular Expression to Finite Automata
- 4) Application of Finite Automata
- 5) Arden's Theorem
- 6) Conversion: Finite Automata to Regular Expression
- 7) Regular Languages
- 8) Non-Regular Languages
- 9) Pumping Lemma
- *10)* Example of Pumping Lemma

Regular Expression

- The language accepted by finite automata can be easily described by simple expressions called Regular Expressions. It is the most effective way to represent any language.
- The languages accepted by some regular expressions are referred to as Regular languages.
- A regular expression can also be described as a sequence of pattern that defines a string.
- Regular expressions are used to match character combinations in strings. String searching algorithm used this pattern to find the operations on a string.

For instance:

In a regular expression, x^* means zero or more occurrence of x.

It can generate {e, x, xx, xxx, xxxx,}

In a regular expression, x^+ means one or more occurrence of x.

It can generate {x, xx, xxx, xxxx,}

Regular expression

- A regular expression is a sequence of characters that define a pattern.
- Notational shorthand's
 - One or more occurrences: +
 - Zero or more occurrences: *
 - 3. Alphabets: Σ

Regular expression

Subject: Theory of Automata and Formal Language

Operations on Regular Language

The various operations on regular language are:

Union: If L and M are two regular languages then their union L U M is also a union.

 $L \cup M = \{s \mid s \text{ is in } L \text{ or } s \text{ is in } M\}$

Intersection: If L and M are two regular languages then their intersection is also an intersection.

 $L \cap M = \{st \mid s \text{ is in } L \text{ and } t \text{ is in } M\}$

Kleen closure: If L is a regular language, then its Kleen closure L1* will also be a regular language.

 L^* = Zero or more occurrence of language L.

Example:

Write the regular expression for the language accepting all the string containing any number of a's and b's.

The regular expression will be:

$$R.E. = (a + b)^*$$

This will give the set as $L = \{\epsilon, a, aa, b, bb, ab, ba, aba, bab,\},$

any combination of a and b.

The (a + b)* shows any combination with a and b even a null string.

VISION INSTITUTE OF TECHNOLOGY,

Subject: Theory of Automata and Formal Language

Regular expression examples

1.	0 or 1 Strings: 0,1	$R.E.=0\mid 1$
2.	0 or 11 or 111	
	Strings: 0,11,111	$R.E. = 0 \mid 11 \mid 111$
3.	String having zero or more a.	
	Strings: ϵ , a, aa, aaa, aaaa	$R.E.=a^*$
4.	String having one or more <i>a</i> .	
	Strings: a, aa, aaa, aaaa	$R. E. = a^+$
5.	Regular expression over $\Sigma = \{a, b\}$ 3.	, <i>c</i> } that represent all string of length
	Strings: abc, bca, bbb, cab, al	R.E. = (a b c) (a b c) (a b c)
6.	All binary string.	
	Strings: 0, 11, 101, 10101, 11	$\boldsymbol{R}.\boldsymbol{E}.=\left(\boldsymbol{0}\mid\boldsymbol{1}\right)^{+}$

VISION INSTITUTE OF TECHNOLOGY,

Regular expression examples

7.	0 or more occurrence of either a or b or both		
	$Strings: \epsilon, a, aa, abab, bab$	$R.E.=(a\mid b)^*$	
8.	1 or more occurrence of either a	or b or both	
	Strings: a, aa, abab, bab, bbb	$\boldsymbol{R}.\boldsymbol{E}.=\left(\boldsymbol{a}\mid\boldsymbol{b}\right)^{+}$	
9.	Binary no. ends with 0		
	<i>Strings</i> : 0, 10, 100, 1010, 111	$R.E.=(0\mid 1)^*0$	
10.	Binary no. ends with 1		
	Strings: 1, 101, 1001, 10101,	$R.E.=(0\mid 1)^{*}1$	
11.	Binary no. starts and ends with 1		
	Strings: 11, 101, 1001, 10101	$R.E. = 1(0 1)^* 1$	
12.	String starts and ends with same	character	
	Stain as 00 101 aba baab		

Strings: 00, 101, aba, baab ...

n. E	L(V)	1)	T UI	V(VII)	v
	a (a	b)	a or	b (a b)	b

Regular expression examples

13. All string of a and b starting with a Strings: a, ab, aab, abb	$R.E.=a(a\mid b)^*$		
14. String of 0 and 1 ends with 00 <i>Strings</i> : 00, 100, 000, 1000, 1100	$R.E. = (0 \mid 1)^* 00$		
15. String ends with abb Strings: abb, babb, ababb	$R.E.=(a\mid b)^*abb$		
16. String starts with 1 and ends with 0 Strings: 10, 100, 110, 1000, 1100 R. E. = 1(0 1)* 0			
17. All binary string with at least 3 characters and 3 rd character should be zero Strings: 000, 100, 1100, 1001 R.E. = (0 1)(0 1)0(0 1)*			
18. Language which consist of exactly two b's over the set $\Sigma = \{a, b\}$			
Strings: bb, bab, aabb, abba	$R.E. = a^* b a^* b a^*$		

Subject: Theory of Automata and Formal Language

Regular expression examples 19. The language with $\Sigma = \{a, b\}$ such that 3^{rd} character from right end of the string is always *Strings: aaa, aba, aaba, abb... R. E. = (a | b) * a(a|b)(a|b)* 20. Any no. of *a* followed by any no. of *b* followed by any no. of *c Strings: \epsilon, abbcc, aabc, abb... R. E. = a*b*c** 21. String should contain at least three 1 *Strings: 111,01101,0101110... R. E. = (0|1)*1 (0|1)*1 (0|1)*1 (0|1)** 22. String should contain exactly two 1 *Strings: 11,0101,1100,010010,100100.... R. E. = 0*10*10** 23. Length of string should be at least 1 and at most 3 *Strings: 0, 1, 11, 01, 111, 010, 100.... R. E. = (0|1) | (0|1)(0|1) | (0|1)(0|1)(0|1)*

24. No. of zero should be multiple of 3

Strings: 000, 010101, 110100, 000000, 100010010.... $R.E. = (1^*01^*01^*01^*)^*$

Subject: Theory of Automata and Formal Language

Regular expression examples

2 5. The language with $Σ = {a, b, c}$ where <i>a</i> should be multiple of 3			
Strings: aaa, baaa, bacaba, a	$R.E. = ((b c)^* a(b c)^* a(b c)^* a(b c)^*)^*$		
26. Even no. of 0			
Strings: 00, 0101, 0000, 100100	$R. E. = (1^*01^*01^*)^*$		
27. String should have odd length			
Strings: 0, 010, 110, 000, 10010	$R.E. = (0 1) ((0 1)(0 1))^*$		
28. String should have even length			
<i>Strings</i> : 00, 0101, 0000, 100100	$R. E. = ((0 1)(0 1))^*$		
29. String start with 0 and has odd length			
<i>Strings</i> : 0, 010, 010, 000, 00010	$R.E.=(0)((0 1)(0 1))^*$		
30. String start with 1 and has even length			
Strings: 10, 1100, 1000, 100100	$R.E. = 1(0 1)((0 1)(0 1))^*$		

Regular expression examples

Example:

Write the regular expression for the language accepting all the string which are starting with 1 and ending with 0, over $\Sigma = \{0, 1\}$.

Solution:

In a regular expression, the first symbol should be 1, and the last symbol should be 0. The R.E. is as follows:

R = 1 (0+1)* 0

Example :

Write the regular expression for the language starting with a but not having consecutive b's.

Solution: The regular expression has to be built for the language:

 $L = \{a, aba, aab, aba, aaa, abab,\}$

The regular expression for the above language is:

 $\mathsf{R} = \{\mathsf{a} + \mathsf{a}\mathsf{b}\}^*$

Conversion of RE to FA

To convert the RE to FA, we are going to use a method called the subset method. This method is used to obtain FA from the given regular expression. This method is given below:

Step 1: Design a transition diagram for given regular expression, using NFA with ε moves.

Step 2: Convert this NFA with ε to NFA without ε .

Step 3: Convert the obtained NFA to equivalent DFA.

Subject: Theory of Automata and Formal Language

Example 1:

Design a FA from given regular expression $10 + (0 + 11)0^* 1$.

Solution: First we will construct the transition diagram for a given regular expression.

Step 1:

Step 3:

WISION INSTITUTE OF TECHNOLOGY,

Subject: Theory of Automata and Formal Language

Step 4:

Step 5:

Now we have got NFA without ϵ . Now we will convert it into required DFA for that, we will first write a transition table for this NFA.

Subject: Theory of Automata and Formal Language

State	0	1
→q0	q3	{q1, q2}
q1	qf	φ
q2	φ	q3
q3	q3	qf
*qf	φ	φ

The equivalent DFA will be:

State	0	1
→[q0]	[q3]	[q1, q2]
[q1]	[qf]	φ
[q2]	φ	[q3]
[q3]	[q3]	[qf]
[q1, q2]	[qf]	[qf]
*[qf]	φ	Φ

Subject: Theory of Automata and Formal Language

Applications of FA

- Lexical analysis phase of a compiler.
- Design of digital circuit.
- String matching.
- Communication Protocol for information exchange.

Arden's Theorem

The Arden's Theorem is useful for checking the equivalence of two regular expressions as well as in the conversion of DFA to a regular expression.

Let us see its use in the conversion of DFA to a regular expression.

Following algorithm is used to build the regular expression form given DFA.

- 1. Let q_1 be the initial state.
 - n.
 - 3. Let α_{ii} represents the transition from q_i to q_i .
 - 4. Calculate q_i such that
 - $q_i = \alpha_{ji} \star q_j$
 - If q_i is a start state then we have:

```
q_i = \alpha_{ji} * q_j + \varepsilon
```

5. Similarly, compute the final state which ultimately gives the regular expression 'r'.

Example:

Construct the regular expression for the given DFA

Subject: Theory of Automata and Formal Language

 $q1 = q1 0 + \epsilon$

Since q1 is the start state, so ε will be added, and the input 0 is coming to q1 from q1 write hence we State = source state of input × input coming to it

Similarly,

q2 = q1 1 + q2 1 $q3 = q2 \ 0 + q3 \ (0+1)$

Since the final states are q1 and q2, we are interested in solving q1 and q2 only. Let us see q1 first

 $q1 = q1 0 + \varepsilon$

We can re-write it as

 $q1 = \epsilon + q1 0$

Which is similar to R = Q + RP, and gets reduced to $R = OP^*$.

Assuming R = q1, $Q = \epsilon$, P = 0

We get

 $q1 = \epsilon.(0) *$ q1 = 0* (e.R*= R*)

Substituting the value into q2, we will get

q2 = 0 * 1 + q2 1 $q2 = 0*1 (1)* (R = Q + RP \rightarrow Q P*)$

The regular expression is given by

```
r = q1 + q2
= 0^{*} + 0^{*} 1.1^{*}
r = 0^* + 0^* 1^+ (1.1<sup>*</sup> = 1<sup>+</sup>)
```

Faculty : Shanu Gupta(CSE Department)

Pumping lemma for Regular languages

- It gives a method for pumping (generating) many substrings from a given string.
- In other words, we say it provides means to break a given long input string into several substrings.
- Lt gives necessary condition(s) to prove a set of strings is not regular.

Theorem

For any regular language L, there exists an integer P, such that for all w in L

|w| > = P

We can break w into three strings, w=xyz such that.

(1)|xy| < P

(2)|y| > 1

(3) for all k>= 0: the string xy^kz is also in L

Application of pumping lemma

Pumping lemma is to be applied to show that certain languages are not regular.

It should never be used to show a language is regular.

- If L is regular, it satisfies the Pumping lemma.
- If L does not satisfy the Pumping Lemma, it is not regular.

Steps to prove that a language is not regular by using PLare as follows-

- step 1 We have to assume that L is regular
- step 2 So, the pumping lemma should hold for L.

VISION INSTITUTE OF TECHNOLOGY,

Subject: Theory of Automata and Formal Language

- step 3 It has to have a pumping length (say P).
- step 4 All strings longer that P can be pumped |w|>=p.
- step 5 Now find a string 'w' in L such that $|w| \ge P$
- step 6 Divide w into xyz.
- step 7 Show that $xy^iz \notin L$ for some i.
- step 8 Then consider all ways that w can be divided into xyz.
- step 9 Show that none of these can satisfy all the 3 pumping conditions at same time.
- step 10 w cannot be pumped = CONTRADICTION.

Example of Proof Idea of the Pumping Lemma[3] [top]

The integer p associated with the pumping lemma is just the number of states a DFA that recognizes the regular language in question.

b ---> [q0] ---> [q1] ---> [q2] ---> [[q3]] ^ | +----+ p = 4So we need a string of length at least 4 w = abcabc is accepted and has length 6 >= 4. The first state that is repeated when w is input to this DFA is q1. x = string up to the first occurrence of repeated state q_1 $y = string after x up to the second occurence of q_1$ So x = a and y = bca which means z = bcw = |a|bca|bc|х у г Pumping lemma says these string are also in the language $w_0 = xy^0z = xz = a bc$ $w_1 = xy^1z = xyz = a \underline{bca} bc$ $w_2 = xy^2z = xyyz = a \underline{bca} \underline{bca} bc$

Example 1 Using the Pumping Lemma[4] [top]

 $L = \{ a^{i}ba^{j} | 0 \le i \le j \}$

Proof is by contradiction, using the pumping lemma to get the contradiction.

Assume L is regular and let p be the constant given by the pumping lemma.

The string $w = a^p b a^{p+1}$ is in L and has length > p.

By the pumping lemma w = xyz with |xy| <= p and |y| > 0.

But this means the prefix xy must come before the 'b' and consist only of a's.

So this means y consists of 1 or more a's (x might be empty).

By the pumping lemma, $w_2 = xy^2 z$ must also be in L, but the number of a's before the b in w_2 must be at least p + 1, while the number of a's after b is still p + 1.

But this contradicts the condition for w_2 being in L and so the assumption that L is regular is false.

Example 2 Using the Pumping Lemma[5] [top]

 $L = \{ a^{i}ba^{j} | i > j >= 0 \}$

Proof is by contradiction again, using the pumping lemma to get the contradiction, but has to work slightly differently.

Adding more y's will not work because now the condition is $i > j_{i}$, the leading a's are greater in number than the ones after the b.

Assume L is regular and let p be the constant given by the pumping lemma.

Subject: Theory of Automata and Formal Language

The string $w = a^{p+1}ba^p$ is in L and has length > p.

By the pumping lemma w = xyz with |xy| <= p and |y| > 0.

But this again means the prefix xy must come before the 'b' and consist only of a's.

So this means y consists of 1 or more a's (x might be empty).

By the pumping lemma, $w_0 = xz$ must also be in L, but the number of a's before the b in w_0 must be no more than p since we have removed at least 1 a from w to get w_0 . But the number of a's after b in w_0 is still p.

But this contradicts the condition for w_0 being in L and so the assumption that L is regular is false.