M ——

= ALIGARH

Subject: Theory of Automata and
Formal Language

UNIT-I: Introduction

Table of Content
1) Regular Expression
2) Examples of Regular Expression

3) Conversion: Regular Expression to Finite Automata

4) Application of Finite Automata
5) Arden’s Theorem

6) Conversion: Finite Automata to Regular Expression

7) Regular Languages

8) Non-Regular Languages

9) Pumping Lemma

10) Example of Pumping Lemma

pg. 1

Faculty : Shanu Gupta(CSE Department)

M

=, = VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and

O

L% ALIGARH Formal Language

Reqular Expression

o The language accepted by finite automata can be easily described by simple
expressions called Regular Expressions. It is the most effective way to
represent any language.

o Thelanguages accepted by someregular expressionsare referred toas Regular
languages.

o Aregular expression canalso be described as a sequence of pattern that defines
a string.

o Regular expressions are used to match character combinations in strings.
Stringsearchingalgorithmused this patternto find the operationson a string.

For instance:

In a regular expression, X* means zero or more occurrence of x.
It can generate {e, X, XX, XXX, XXXX,}

In a regular expression, x* means one or more occurrence of x.

It can generate {X, XX, XXX, XXXX,}

Regular expression

=« A regular expression is a sequence of characters that define
a pattern.
* Notational shorthand's
1. One or more occurrences: +
2. Zero or more occurrences: *
3. Alphabets: X

pg. 2 Faculty : Shanu Gupta(CSE Department)

"5 ALIGARH

Regular expression

L= Zero or More Occurrences of a =

Regular expression

pg. 3

*

L= One or More Occurrencesof a= 3

Subject: Theory of Automata and

5‘ Infinite

Formal Language

3— Infinite

Faculty : Shanu Gupta(CSE Department)

Subject: Theory of Automata and
Formal Language

Operations on Regular Language

The various operations on regular language are:

Union: If L and M are two regular languages then their union L U M is also a union.
LUM ={s|sisinLorsisin M}

Intersection:If L and M are two regular languages then their intersection is also an
intersection.

LN M= {st|sisinLandtisin M}

Kleen closure: If L is a regular language, then its Kleen closure L1* will also be a regular
language.

L* = Zero or more occurrence of language L.
Example:

Write the regular expression for the language accepting all the string containing any
number of a's and b's.

The regular expression will be:

R.E. = (a + b)*
This will give the set as L = {g, a, aa, b, bb, ab, ba, aba, bab,},
any combination of a and b.

The (a + b)* shows any combination with a and b even a null string.

pg. 4 Faculty : Shanu Gupta(CSE Department)

Subject: Theory of Automata and
Formal Language

Regular expression examples

3 Oorl
Strings: 0,1 RE=0|1
2. Oorllorilll
Strings: 0,11,111 RE=0|11|111

3. String having zero or more a.
Strings: €,a,aa,aaa,aaaa... RE=m

4. String having one or more a.
Strings:a,aa,aaa,aaaa..... RE=a"

5. Regular expression over £ = {a, b, c} that represent all string of length

3.

Strings:abc,bca, bbb, cab,al R.E.= (a|b|c) (a|b|c) (a|b|c)
6. All binary string.

Strings: 0,11,101,10101,11 RE=0|1)"

pg. 5 Faculty : Shanu Gupta(CSE Department)

Subject: Theory of Automata and
Formal Language

Regular expression examples

(&

10.

11.

12.

0 or more occurrence of either a or b or both

Strings: e, a,aa, abab, bab ... R.E.=(a|b)
1 or more occurrence of either a or b or both
Strings:a,aa,abab,bab,bbb R.E.=(a|b) v
Binary no. ends with 0

Strings: 0,10,100,1010,111 RE=(0]|1)0

Binary no. ends with 1
Strings:1,101,1001,10101,. RE=0|1)"1
Binary no. starts and ends with 1

Strings: 11,101,1001,10107 RE=1(0]1)"1
String starts and ends with same character

Strings:00,101,aba, baab ...

nEeC—4(UjL) LUl U(V[i) VU

a(a|b) aor b(a|b) b

Regular expression examples

3.

14.

15,

16.

17.

18.

pg. 6

All string of a and b starting with a
Strings:a,ab,aab,abb... RE=a(a|b)’
String of 0 and 1 ends with 00
Strings:00,100,000,1000,1100.. R.E.=(0|1) 00

String ends with abb
Strings:abb,babb,ababb... R.E.= (a|b) abb

String starts with 1 and ends with O
Strings:10,100,110,1000,1100.. R.E.=1(0|1) 0

All binary string with at least 3 characters and 3" character should be
zero Strings:000,100,1100,1001... R.E.= (0|1)(0|1)0(0 | 1) *

Language which consist of exactly two b’s over the set £ = {a, b}
Strings: bb, bab,aabb, abba... RE=a'ba' ba’

Faculty : Shanu Gupta(CSE Department)

Subject: Theory of Automata and
Formal Language

Regular expression examples

39. The language with £ = {a, b} such that 3 character from right end of
the string is always
Strings:aaa,aba,aaba,abb... R.E = (a|b)+a(a|b)(a|b)

20. Any no. of a followed by any no. of b followed by any no. of ¢
Strings: e, abc,aabbcc, aabc,abb.. R.E.=a b ¢’

21. String should contain at least three 1

Strings:111,01101,0101110.... R.E.= (0|1)*1 (0]1)*1 (0]1)*1 (0|1)"
22. String should contain exactly two 1
Strings:11,0101,1100,010010,100100.... R.E.=0'10°10"

23. Length of string should be at least 1 and at most 3

Strings:0,1,11,01,111,010,100... R.E.=(0|1)](0|1)(0]|1) | (0|1)(0|1)(0|1)
24. No. of zero should be multiple of 3

Strings:000,010101,110100,000000,100010010.... R.E.= (1'01'01701%)"

pg. 7 Faculty : Shanu Gupta(CSE Department)

Subject: Theory of Automata and
Formal Language

Regular expression examples

25. The language with £ = {a, b, c} where a should be multiple of 3

Strings:aaa,baaa, bacaba,a R.E.= ((b|c)"a(b|c)*a(b|c) a(b|c)")"
26. Even no. of 0
Strings:00,0101,0000,100100.... RE. =(1701"01")"

27. String should have odd length
Strings:0,010,110,000,10010.... R.E.= (0|1) ((0|1)(0|1))"

28. String should have even length
Strings:00,0101,0000,100100... R.E.= ((0|1)(0|1))*

29. String start with 0 and has odd length
Strings:0,010,010,000,00010.... R.E.= (0) ((0]1)(0]1))*

30. String start with 1 and has even length
Strings:10,1100,1000,100100... R.E.=1(0|1)((0]1)(0|1))"

Regular expression examples

31. All string begins or ends with 00 or 11

Strings: 00101,10100,110,(R.E.= (00/11)(0| 1) | (0|1) " (00|11)
32. Language of all string containing both 11 and 00 as substring

Strings: 0011,1100,100110,

R.E.= ((0|1)*00(0|1)*11(0|1)*) | ((0|1)*11(0|1)*00(0|1)")
33. String ending with 1 and not contain 00

Strings: 011,1101,1011..... R.E.=(1/01)"
34. Language of Cidentifier

Strings:area,i,redious,gra RE=(_+L)(_+ L +D)

where L is Letter & D is digit

pg. 8 Faculty : Shanu Gupta(CSE Department)

Subject: Theory of Automata and
Formal Language

Example:

Write the regular expression for the language accepting all the string which are starting
with 1 and ending with O, over = {0, 1}.

Solution:

In a regular expression, the first symbol should be 1, and the last symbol should be 0. The
R.E. is as follows:

R=10+1)*0

Example :

Write the regular expression for the language starting with a but not having consecutive
b's.

Solution: The regular expression has to be built for the language:
L = {a, aba, aab, aba, aaa, abab,}

The regular expression for the above language is:

R ={a + ab}*

Conversion of RE to FA

To convert the RE to FA, we are going to use a method called the subset method. This
method is used to obtain FA from the given regular expression. This method is given
below:

Step 1: Design a transition diagram for given regular expression, using NFA with € moves.

Step 2: Convert this NFA with € to NFA without .

Step 3: Convert the obtained NFA to equivalent DFA.

pg. 9 Faculty : Shanu Gupta(CSE Department)

-

%, _® VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and

o

L% ALIGARH Formal Language

Example 1:
Design a FA from given regular expression 10 + (0 + 11)0* 1.
Solution: First we will construct the transition diagram for a given regular expression.

Step 1:

@ 10+(0+11)0*

Step 2:

10

(%)

(0+11)0*1

Step 3:

pg. 10 Faculty : Shanu Gupta(CSE Department)

M

=, = VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and

O

L% ALIGARH Formal Language

Step 4:

Step 5:

Now we have got NFA without €. Now we will convert it into required DFA for that, we will
first write a transition table for this NFA.

pg. 11 Faculty : Shanu Gupta(CSE Department)

@ ALIGARH

The equivalent DFA will be:

State
—[q0]
[q1]
[92]
[93]
[a1, g2]

*[af]

pg. 12

‘jg;s;ﬁ VISION INSTITUTE OF TECHNOLOGY,

Subject: Theory of Automata and

{91, 2}

g3

[q1, 2]

[q3]
[af]
[af]

Formal Language

Faculty : Shanu Gupta(CSE Department)

®[.# VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
'3 ALIGARH Formal Language

Applications of FA

* Lexical analysis phase of a compiler.
* Design of digital circuit.
* String matching.

* Communication Protocol for information exchange.

Arden's Theorem

The Arden's Theorem is useful for checking the equivalence of two regular expressions as
well as in the conversion of DFA to a regular expression.

Let us see its use in the conversion of DFA to a regular expression.

Following algorithm is used to build the regular expression form given DFA.

1. Let g1 be the initial state.

2. There are gz, g3, g4 -..gn NUMber of states. The final state may be some g;where j<=
n.

3. Let o represents the transition from g; to q;.

4. Calculate g; such that

9= i * gj
If g;is a start state then we have:
qi = o5 *ogy e

5. Similarly, compute the final state which ultimately gives the regular expression 'r'.

Example:

Construct the regular expression for the given DFA

pg. 13 Faculty : Shanu Gupta(CSE Department)

Subject: Theory of Automata and

Formal Language
0 1 0.1
Start (3 o
SRR RRG

gl = gl 0 + ¢

Since q1 is the start state, so € will be added, and the input 0 is coming to g1 from g1
hence we write
State = source state of input x input coming to it

Similarly,

g2 = gl 1 + g2 1
g3 = g2 0 + g3 (0+1)

Since the final states are q1 and g2, we are interested in solving g1 and g2 only. Let us see
g1 first

gl = ql 0 + ¢
We can re-write it as

ql = ¢ + ql 0
Which is similar to R = Q + RP, and gets reduced to R = OP*.
AssumingR=q1,Q=¢P=0

We get

gl = £.(0)*
gl = O* (g .R*= R¥)

Substituting the value into g2, we will get

gz = 0* 1 + g2 1
q?2 ox 1 (1)~* (R=0+ RP - Q P¥*)

The regular expression is given by

-
Il

gl + g2
*+ 0" 1.1
0" + 0" 1% (1.17 = 1%

Il
(@)

-
Il

pg. 14 Faculty : Shanu Gupta(CSE Department)

o ——

] ; VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
L% ALIGARH Formal Language

Pumping lemma for Regular languages

e [t gives amethod for pumping (generating) many substrings from a given string.
e In other words, we say it provides means to break a given long input string into several
substrings.

e Ltgives necessary condition(s) to prove a set of strings is not regular.

Theorem

For any regular language L, there exists an integer P, such that for all w in L
|w|>=P

We can break w into three strings, w=xyz such that.

(DIxyl < P

(2)lyl > 1

(3)for all k>= 0: the string xy*z is also in L

Application of pumping lemma

Pumping lemma is to be applied to show that certain languages are not regular.
It should never be used to show a language is regular.

e IfL isregular, it satisfies the Pumping lemma.

e IfL does not satisfy the Pumping Lemma, it is not regular.
Steps to prove that a language is not regular by using PLare as follows—

e step 1 - We have to assume that L is regular

e step 2 - So, the pumping lemma should hold for L.

pg. 15 Faculty : Shanu Gupta(CSE Department)

i &= VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and

£

= L% ALIGARH Formal Language

e step 3 - Ithas to have a pumping length (say P).

e step 4 — All strings longer that P can be pumped |w|>=p.

e step 5 - Now find a string 'w' in L such that |w|>=P

e step 6 — Divide w into xyz.

e step 7 — Show that xyiz € L for some i.

e step 8 — Then consider all ways that w can be divided into xyz.

e step 9 — Show that none of these can satisfy all the 3 pumping conditions at same time.
e step 10 - w cannot be pumped = CONTRADICTION.

Example of Proof Idea of the Pumping
Lemma[3] [top]

The integer p associated with the pumping lemma is just the number
of states a DFA that recognizes the regular language in question.

p =4
So we need a string of length at least 4
w = abcabc is accepted and has length 6 >= 4.

The first state that is repeated when w is input to this DFA
is qg1.

X string up to the first occurrence of repeated state g

y string after x up to the second occurence of qgi
So x = a and y = bca which means z = bc
w = |albcalbc|

X vy z

Pumping lemma says these string are also in the language

wo = xy%z = xz = a bc
w1 = xylz = xyz = a bca bc
w2, = Xy’z = xyyz = a bca bca bc

pg. 16 Faculty : Shanu Gupta(CSE Department)

https://condor.depaul.edu/glancast/444class/docs/slides/Oct09/slide3.html
https://condor.depaul.edu/glancast/444class/docs/lecOct09.html#contents

% VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
= 1T ALIGARH Formal Language

Example 1 Using the Pumping
Lemma[4] [top]

L=1{abal | 0 <=1 <3}

Proof is by contradiction, using the pumping lemma to get the
contradiction.

Assume L is regular and let p be the constant given by the pumping
lemma.

The string w = aPbaP*! is in L and has length > p.
By the pumping lemma w = xyz with |[xy| <= p and |y| > 0.

But this means the prefix xy must come before the 'b' and consist
only of a's.

So this means y consists of 1 or more a's (x might be empty).

By the pumping lemma, w, = xy?z must also be in L, but the
number of a's before the b in w, must be at least p + 1, while the
number of a's after b is still p + 1.

But this contradicts the condition for w; being in L and so the
assumption that L is regular is false.

Example 2 Using the Pumping
Lemma[5] [top]

L={abal | i > 3§ >= 0}

Proof is by contradiction again, using the pumping lemma to get the
contradiction, but has to work slightly differently.

Adding more y's will not work because now the condition isi > j.,
the leading a's are greater in number than the ones after the b.

Assume L is regular and let p be the constant given by the pumping
lemma.

pg. 17 Faculty : Shanu Gupta(CSE Department)

https://condor.depaul.edu/glancast/444class/docs/slides/Oct09/slide4.html
https://condor.depaul.edu/glancast/444class/docs/lecOct09.html#contents
https://condor.depaul.edu/glancast/444class/docs/slides/Oct09/slide5.html
https://condor.depaul.edu/glancast/444class/docs/lecOct09.html#contents

% _i® VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
L% ALIGARH Formal Language

The string w = aP*lbaP is in L and has length > p.
By the pumping lemma w = xyz with |[xy| <= p and |y| > 0.

But this again means the prefix xy must come before the 'b' and
consist only of a's.

So this means y consists of 1 or more a's (x might be empty).

By the pumping lemma, wo = Xz must also be in L, but the number
of a's before the b in wo must be no more than p since we have
removed at least 1 a from w to get wo. But the number of a's after b
in wo is still p.

But this contradicts the condition for wo being in L and so the
assumption that L is regular is false.

pg. 18 Faculty : Shanu Gupta(CSE Department)

