UNIT-I: Introduction

Table of Content

1) Regular Expression

- *2) Examples of Regular Expression*
- *3) Conversion: Regular Expression to Finite Automata*
- *4) Application of Finite Automata*
- *5) Arden's Theorem*
- *6) Conversion: Finite Automata to Regular Expression*
- *7) Regular Languages*
- *8) Non-Regular Languages*
- *9) Pumping Lemma*
- *10) Example of Pumping Lemma*

Regular Expression

- ^o The language accepted by finite automata can be easily described by simple expressions called Regular Expressions. It is the most effective way to represent any language.
- ^o The languages accepted by some regular expressions are referred to as Regular languages.
- ^o A regular expression can also be described as a sequence of pattern that defines a string.
- ^o Regular expressions are used to match character combinations in strings. String searching algorithm used this pattern to find the operations on a string.

For instance:

In a regular expression, x* means zero or more occurrence of x.

It can generate $\{e, x, xx, xxx, xxxx,\}$

In a regular expression, x^+ means one or more occurrence of x.

It can generate $\{x, xx, xxx, xxxx,\}$

Regular expression

- A regular expression is a sequence of characters that define a pattern.
- Notational shorthand's
	- 1. One or more occurrences: +
	- 2. Zero or more occurrences: *
	- 3. Alphabets: Σ

Operations on Regular Language

The various operations on regular language are:

Union: If L and M are two regular languages then their union L U M is also a union.

L U M = $\{s \mid s \text{ is in } L \text{ or } s \text{ is in } M\}$

Intersection: If L and M are two regular languages then their intersection is also an intersection.

 $L \cap M = \{st \mid s \text{ is in } L \text{ and } t \text{ is in } M\}$

Kleen closure: If L is a regular language, then its Kleen closure L1^{*} will also be a regular language.

 L^* = Zero or more occurrence of language L.

Example:

Write the regular expression for the language accepting all the string containing any number of a's and b's.

The regular expression will be:

$$
R.E. = (a + b)^*
$$

This will give the set as $L = \{\epsilon, a, a, b, bb, ab, ba, aba, bab,\}$,

any combination of a and b.

The $(a + b)^*$ shows any combination with a and b even a null string.

Regular expression examples

Regular expression examples

Strings: 00, 101, aba, baab ...

Regular expression examples

Regular expression examples 19. The language with $\Sigma = \{a, b\}$ such that 3rd character from right end of the string is always Strings: aaa, aba, aaba, abb... $R.E = (a | b) * a(a|b)(a|b)$ 20. Any no. of α followed by any no. of β followed by any no. of α Strings: ϵ , abc, aabbcc, aabc, abb... $R.E = a^{\dagger} b^{\dagger} c^{\dagger}$ 21. String should contain at least three 1 Strings: 111, 01101, 0101110.... $R.E = (0|1)^*1 (0|1)^*1 (0|1)^*1 (0|1)^*$ 22. String should contain exactly two 1 *Strings*: 11, 0101, 1100, 010010, 100100.... $R.E. = 0^*10^*10^*$ 23. Length of string should be at least 1 and at most 3 Strings: 0, 1, 11, 01, 111, 010, 100.... $R.E = (0|1) | (0|1)(0|1) | (0|1)(0|1)(0|1)$

24. No. of zero should be multiple of 3

Strings: 000, 010101, 110100, 000000, 100010010.... $R.E. = (1^*01^*01^*01^*)^*$

Regular expression examples

Regular expression examples

Example:

Write the regular expression for the language accepting all the string which are starting with 1 and ending with 0, over $\Sigma = \{0, 1\}$.

Solution:

In a regular expression, the first symbol should be 1, and the last symbol should be 0. The R.E. is as follows:

 $R = 1 (0+1)*0$

Example :

Write the regular expression for the language starting with a but not having consecutive $h's$.

Solution: The regular expression has to be built for the language:

 $L = \{a, aba, aab, aba, aaa, abab,\}$

The regular expression for the above language is:

 $R = \{a + ab\}^*$

Conversion of RE to FA

To convert the RE to FA, we are going to use a method called the subset method. This method is used to obtain FA from the given regular expression. This method is given below:

Step 1: Design a transition diagram for given regular expression, using NFA with ε moves.

Step 2: Convert this NFA with ε to NFA without ε.

Step 3: Convert the obtained NFA to equivalent DFA.

Example 1:

Design a FA from given regular expression $10 + (0 + 11)0$ ^{*} 1.

Solution: First we will construct the transition diagram for a given regular expression.

Step 1:

Step 3:

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and SAN MUGARH

Formal Language

Step 4:

Step 5:

Now we have got NFA without ε. Now we will convert it into required DFA for that, we will first write a transition table for this NFA.

The equivalent DFA will be:

Applications of FA

- Lexical analysis phase of a compiler.
- Design of digital circuit.
- String matching.
- Communication Protocol for information exchange.

Arden's Theorem

The Arden's Theorem is useful for checking the equivalence of two regular expressions as well as in the conversion of DFA to a regular expression.

Let us see its use in the conversion of DFA to a regular expression.

Following algorithm is used to build the regular expression form given DFA.

- 1. Let q_1 be the initial state.
	- 2. There are q_2 , q_3 , q_4 q_n number of states. The final state may be some q_i where j \leq = n.
	- 3. Let α_{ji} represents the transition from q_i to q_i .
	- 4. Calculate q_i such that
		- $q_i = \alpha_{ji} * q_j$
	- If q_i is a start state then we have:

```
q_i = \alpha_{ji} * q_j + \varepsilon
```
5. Similarly, compute the final state which ultimately gives the regular expression 'r'.

Example:

Construct the regular expression for the given DFA

q1 = q1 0 + ε

Since q1 is the start state, so ε will be added, and the input 0 is coming to q1 from q1 hence we write State = source state of input \times input coming to it

Similarly,

 $q2 = q1 1 + q2 1$ $q3 = q2 \ 0 + q3 \ (0+1)$

Since the final states are q1 and q2, we are interested in solving q1 and q2 only. Let us see q1 first

 $q1 = q1 0 + \varepsilon$

We can re-write it as

q1 = ε + q1 0

Which is similar to $R = Q + RP$, and gets reduced to $R = OP^*$.

Assuming $R = q1$, $Q = \varepsilon$, $P = 0$

We get

q1 = ϵ . (0)* q1 = 0 * (ε. R *= R *)

Substituting the value into q2, we will get

 $q2 = 0 * 1 + q2 1$ $q2 = 0* 1 (1)* (R = Q + RP \rightarrow Q P*)$

The regular expression is given by

```
r = q1 + q2= 0^* + 0^* 1 \cdot 1^*r = 0^* + 0^* 1^+ (1 \cdot 1^* = 1^+)
```
pg. 14 Faculty : Shanu Gupta(CSE Department)

Pumping lemma for Regular languages

- It gives a method for pumping (generating) many substrings from a given string.
- In other words, we say it provides means to break a given long input string into several substrings.
- Lt gives necessary condition(s) to prove a set of strings is not regular. ADVERTISEMENT

Theorem

For any regular language L, there exists an integer P, such that for all w in L

 $|w|>=P$

We can break w into three strings, w=xyz such that.

 (1) $|xy|$ \lt P

 (2) |y| > 1

(3) for all $k >= 0$: the string xy^kz is also in L

Application of pumping lemma

Pumping lemma is to be applied to show that certain languages are not regular.

It should never be used to show a language is regular.

- If L is regular, it satisfies the Pumping lemma.
- If L does not satisfy the Pumping Lemma, it is not regular.

Steps to prove that a language is not regular by using PLare as follows−

- step 1 − We have to assume that L is regular
- step 2 − So, the pumping lemma should hold for L.

- step 3 − It has to have a pumping length (say P).
- step 4 All strings longer that P can be pumped $|w|>=p$.
- step $5 Now$ find a string 'w' in L such that $|w| >= P$
- step 6 − Divide w into xyz.
- step 7 Show that xyⁱz ∉ L for some i.
- step 8 Then consider all ways that w can be divided into xyz.
- step 9 Show that none of these can satisfy all the 3 pumping conditions at same time.
- step 10 − w cannot be pumped = CONTRADICTION.

Example of Proof Idea of the Pumping Lemm[a\[3\]](https://condor.depaul.edu/glancast/444class/docs/slides/Oct09/slide3.html) [\[top\]](https://condor.depaul.edu/glancast/444class/docs/lecOct09.html#contents)

The integer p associated with the pumping lemma is just the number of states a DFA that recognizes the regular language in question.

a b c ---> [q0] ---> [q1] ---> [q2] ---> [[q3]] \wedge $\qquad \qquad$ | | +--------------------+ <u>a a shekara ta 1979, a shekara ta 1971, a shekara ta 1971, a shekara ta 1971, a shekara ta 1971, a shekara ta </u> $p = 4$ So we need a string of length at least 4 $w = abcabc$ is accepted and has length $6 \ge 4$. The first state that is repeated when w is input to this DFA is q1. $x =$ string up to the first occurrence of repeated state q_1 $y =$ string after x up to the second occurence of q_1 So $x = a$ and $y = bca$ which means $z = bc$ $w = |a|bca|bc|$ x y z Pumping lemma says these string are also in the language $w_0 = xy^0z = xz = a bc$ $w_1 = xy^1z = xyz = a \underline{bca} bc$ $w_2 = xy^2z = xyyz = a bca bca$

Example 1 Using the Pumping Lemm[a\[4\]](https://condor.depaul.edu/glancast/444class/docs/slides/Oct09/slide4.html) [\[top\]](https://condor.depaul.edu/glancast/444class/docs/lecOct09.html#contents)

 $L = \{ a^{i}ba^{j} | 0 \le i \le j \}$

Proof is by contradiction, using the pumping lemma to get the contradiction.

Assume L is regular and let p be the constant given by the pumping lemma.

The string $w = a^pba^{p+1}$ is in L and has length $> p$.

By the pumping lemma $w = xyz$ with $|xy| \leq p$ and $|y| > 0$.

But this means the prefix xy must come before the 'b' and consist only of a's.

So this means y consists of 1 or more a's (x might be empty).

By the pumping lemma, $w_2 = xy^2z$ must also be in L, but the number of a's before the b in w_2 must be at least $p + 1$, while the number of a's after b is still $p + 1$.

But this contradicts the condition for w_2 being in L and so the assumption that L is regular is false.

Example 2 Using the Pumping Lemm[a\[5\]](https://condor.depaul.edu/glancast/444class/docs/slides/Oct09/slide5.html) [\[top\]](https://condor.depaul.edu/glancast/444class/docs/lecOct09.html#contents)

 $L = \{ a^{i}ba^{j} | i > j > = 0 \}$

Proof is by contradiction again, using the pumping lemma to get the contradiction, but has to work slightly differently.

Adding more y's will not work because now the condition is $i > j$. the leading a's are greater in number than the ones after the b.

Assume L is regular and let p be the constant given by the pumping lemma.

 \blacktriangleright VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and **ALIGARH Formal Language**

The string $w = a^{p+1}ba^p$ is in L and has length $> p$.

By the pumping lemma $w = xyz$ with $|xy| \leq p$ and $|y| > 0$.

But this again means the prefix xy must come before the 'b' and consist only of a's.

So this means y consists of 1 or more a's (x might be empty).

By the pumping lemma, $w_0 = xz$ must also be in L, but the number of a's before the b in w_0 must be no more than p since we have removed at least 1 a from w to get w_0 . But the number of a's after b in w_0 is still p.

But this contradicts the condition for w_0 being in L and so the assumption that L is regular is false.