
VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 1 Faculty : Shanu Gupta(CSE Department)

UNIT-I: Introduction

Table of Content

1) Regular Expression

2) Examples of Regular Expression

3) Conversion: Regular Expression to Finite Automata

4) Application of Finite Automata

5) Arden’s Theorem

6) Conversion: Finite Automata to Regular Expression

7) Regular Languages

8) Non-Regular Languages

9) Pumping Lemma

10) Example of Pumping Lemma

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 2 Faculty : Shanu Gupta(CSE Department)

Regular Expression
o The language accepted by finite automata can be easily described by simple

expressions called Regular Expressions. It is the most effective way to

represent any language.

o The languages accepted by some regular expressions are referred to as Regular

languages.

o A regular expression can also be described as a sequence of pattern that defines

a string.

o Regular expressions are used to match character combinations in strings.

String searching algorithm used this pattern to find the operations on a string.

For instance:

In a regular expression, x* means zero or more occurrence of x.

 It can generate {e, x, xx, xxx, xxxx,}

In a regular expression, x+ means one or more occurrence of x.

 It can generate {x, xx, xxx, xxxx,}

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 3 Faculty : Shanu Gupta(CSE Department)

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 4 Faculty : Shanu Gupta(CSE Department)

Operations on Regular Language

The various operations on regular language are:

Union: If L and M are two regular languages then their union L U M is also a union.

 L U M = {s | s is in L or s is in M}

Intersection: If L and M are two regular languages then their intersection is also an

intersection.

 L ⋂ M = {st | s is in L and t is in M}

Kleen closure: If L is a regular language, then its Kleen closure L1* will also be a regular

language.

 L* = Zero or more occurrence of language L.

Example:

Write the regular expression for the language accepting all the string containing any

number of a's and b's.

The regular expression will be:

R.E. = (a + b)*

This will give the set as L = {ε, a, aa, b, bb, ab, ba, aba, bab,},

any combination of a and b.

The (a + b)* shows any combination with a and b even a null string.

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 5 Faculty : Shanu Gupta(CSE Department)

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 6 Faculty : Shanu Gupta(CSE Department)

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 7 Faculty : Shanu Gupta(CSE Department)

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 8 Faculty : Shanu Gupta(CSE Department)

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 9 Faculty : Shanu Gupta(CSE Department)

Example:

Write the regular expression for the language accepting all the string which are starting

with 1 and ending with 0, over ∑ = {0, 1}.

Solution:

In a regular expression, the first symbol should be 1, and the last symbol should be 0. The

R.E. is as follows:

R = 1 (0+1)* 0

Example :

Write the regular expression for the language starting with a but not having consecutive

b's.

Solution: The regular expression has to be built for the language:

L = {a, aba, aab, aba, aaa, abab,}

The regular expression for the above language is:

R = {a + ab}*

Conversion of RE to FA

To convert the RE to FA, we are going to use a method called the subset method. This

method is used to obtain FA from the given regular expression. This method is given

below:

Step 1: Design a transition diagram for given regular expression, using NFA with ε moves.

Step 2: Convert this NFA with ε to NFA without ε.

Step 3: Convert the obtained NFA to equivalent DFA.

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 10 Faculty : Shanu Gupta(CSE Department)

Example 1:

Design a FA from given regular expression 10 + (0 + 11)0* 1.

Solution: First we will construct the transition diagram for a given regular expression.

Step 1:

Step 2:

Step 3:

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 11 Faculty : Shanu Gupta(CSE Department)

Step 4:

Step 5:

Now we have got NFA without ε. Now we will convert it into required DFA for that, we will

first write a transition table for this NFA.

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 12 Faculty : Shanu Gupta(CSE Department)

State 0 1

→q0 q3 {q1, q2}

q1 qf ϕ

q2 ϕ q3

q3 q3 qf

*qf ϕ ϕ

The equivalent DFA will be:

State 0 1

→[q0] [q3] [q1, q2]

[q1] [qf] ϕ

[q2] ϕ [q3]

[q3] [q3] [qf]

[q1, q2] [qf] [qf]

*[qf] ϕ Φ

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 13 Faculty : Shanu Gupta(CSE Department)

Arden's Theorem

The Arden's Theorem is useful for checking the equivalence of two regular expressions as

well as in the conversion of DFA to a regular expression.

Let us see its use in the conversion of DFA to a regular expression.

Following algorithm is used to build the regular expression form given DFA.

1. Let q1 be the initial state.

2. There are q2, q3, q4qn number of states. The final state may be some q j where j<=

n.

3. Let αji represents the transition from q j to qi.

4. Calculate qi such that
 qi = αji * qj

If qj is a start state then we have:
 qi = αji * qj + ε

5. Similarly, compute the final state which ultimately gives the regular expression 'r'.

Example:

Construct the regular expression for the given DFA

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 14 Faculty : Shanu Gupta(CSE Department)

q1 = q1 0 + ε

Since q1 is the start state, so ε will be added, and the input 0 is coming to q1 from q1

hence we write

State = source state of input × input coming to it

Similarly,

q2 = q1 1 + q2 1

q3 = q2 0 + q3 (0+1)

Since the final states are q1 and q2, we are interested in solving q1 and q2 only. Let us see

q1 first

q1 = q1 0 + ε

We can re-write it as

q1 = ε + q1 0

Which is similar to R = Q + RP, and gets reduced to R = OP*.

Assuming R = q1, Q = ε, P = 0

We get

q1 = ε.(0)*

q1 = 0* (ε.R*= R*)

Substituting the value into q2, we will get

q2 = 0* 1 + q2 1

q2 = 0* 1 (1)* (R = Q + RP → Q P*)

The regular expression is given by

r = q1 + q2

= 0* + 0* 1.1*

r = 0* + 0* 1+ (1.1* = 1+)

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 15 Faculty : Shanu Gupta(CSE Department)

Pumping lemma for Regular languages

• It gives a method for pumping (generating) many substrings from a given string.

• In other words, we say it provides means to break a given long input string into several

substrings.

• Lt gives necessary condition(s) to prove a set of strings is not regular.
ADVERTISEMENT

Theorem

For any regular language L, there exists an integer P, such that for all w in L

|w|>=P

We can break w into three strings, w=xyz such that.

(1)lxyl < P

(2)lyl > 1

(3)for all k>= 0: the string xykz is also in L

Application of pumping lemma

Pumping lemma is to be applied to show that certain languages are not regular.

It should never be used to show a language is regular.

• If L is regular, it satisfies the Pumping lemma.

• If L does not satisfy the Pumping Lemma, it is not regular.

Steps to prove that a language is not regular by using PLare as follows−

• step 1 − We have to assume that L is regular

• step 2 − So, the pumping lemma should hold for L.

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 16 Faculty : Shanu Gupta(CSE Department)

• step 3 − It has to have a pumping length (say P).

• step 4 − All strings longer that P can be pumped |w|>=p.

• step 5 − Now find a string 'w' in L such that |w|>=P

• step 6 − Divide w into xyz.

• step 7 − Show that xyiz ∉ L for some i.

• step 8 − Then consider all ways that w can be divided into xyz.

• step 9 − Show that none of these can satisfy all the 3 pumping conditions at same time.

• step 10 − w cannot be pumped = CONTRADICTION.

Example of Proof Idea of the Pumping
Lemma[3] [top]

The integer p associated with the pumping lemma is just the number

of states a DFA that recognizes the regular language in question.

 a b c

 ---> [q0] ---> [q1] ---> [q2] ---> [[q3]]

 ^ |

 | |

 +--------------------+

 a

 p = 4

 So we need a string of length at least 4

 w = abcabc is accepted and has length 6 >= 4.

 The first state that is repeated when w is input to this DFA

 is q1.

 x = string up to the first occurrence of repeated state q1

 y = string after x up to the second occurence of q1

 So x = a and y = bca which means z = bc

 w = |a|bca|bc|

 x y z

 Pumping lemma says these string are also in the language

 w0 = xy0z = xz = a bc

 w1 = xy1z = xyz = a bca bc

 w2 = xy2z = xyyz = a bca bca bc

https://condor.depaul.edu/glancast/444class/docs/slides/Oct09/slide3.html
https://condor.depaul.edu/glancast/444class/docs/lecOct09.html#contents

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 17 Faculty : Shanu Gupta(CSE Department)

Example 1 Using the Pumping
Lemma[4] [top]

 L = { aibaj | 0 <= i < j }

Proof is by contradiction, using the pumping lemma to get the

contradiction.

Assume L is regular and let p be the constant given by the pumping

lemma.

The string w = apbap+1 is in L and has length > p.

By the pumping lemma w = xyz with |xy| <= p and |y| > 0.

But this means the prefix xy must come before the 'b' and consist

only of a's.

So this means y consists of 1 or more a's (x might be empty).

By the pumping lemma, w2 = xy2z must also be in L, but the
number of a's before the b in w2 must be at least p + 1, while the

number of a's after b is still p + 1.

But this contradicts the condition for w2 being in L and so the

assumption that L is regular is false.

Example 2 Using the Pumping

Lemma[5] [top]

 L = { aibaj | i > j >= 0 }

Proof is by contradiction again, using the pumping lemma to get the

contradiction, but has to work slightly differently.

Adding more y's will not work because now the condition is i > j.,

the leading a's are greater in number than the ones after the b.

Assume L is regular and let p be the constant given by the pumping

lemma.

https://condor.depaul.edu/glancast/444class/docs/slides/Oct09/slide4.html
https://condor.depaul.edu/glancast/444class/docs/lecOct09.html#contents
https://condor.depaul.edu/glancast/444class/docs/slides/Oct09/slide5.html
https://condor.depaul.edu/glancast/444class/docs/lecOct09.html#contents

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 18 Faculty : Shanu Gupta(CSE Department)

The string w = ap+1bap is in L and has length > p.

By the pumping lemma w = xyz with |xy| <= p and |y| > 0.

But this again means the prefix xy must come before the 'b' and

consist only of a's.

So this means y consists of 1 or more a's (x might be empty).

By the pumping lemma, w0 = xz must also be in L, but the number

of a's before the b in w0 must be no more than p since we have

removed at least 1 a from w to get w0. But the number of a's after b

in w0 is still p.

But this contradicts the condition for w0 being in L and so the

assumption that L is regular is false.

