
VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 1 Faculty : Shanu Gupta(CSE Department)

UNIT-I: Introduction

Table of Content

1) Theory of Automata/Theory of Computation: Introduction

2) Finite Automata

3) Deterministic Finite Automata

4) Non- Deterministic Finite Automata

5) Epsilon Non- Deterministic Finite Automata

6) Conversion -Epsilon NFA to NFA

7) NFA to DFA

8) Minimization of DFA

9) Mealy and Moore machine

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 2 Faculty : Shanu Gupta(CSE Department)

Introduction of Theory of Computation/ Theory of Automata

Automata theory (also known as Theory Of Computation) is a theoretical branch of Computer

Science and Mathematics, which mainly deals with the logic of computation with respect to

simple machines, referred to as automata.

Automata* enables the scientists to understand how machines compute the functions and solve

problems. The main motivation behind developing Automata Theory was to develop methods to

describe and analyse the dynamic behaviour of discrete systems.

Automata Theory is a branch of computer science that deals with designing abstract self-

propelled computing devices that follow a predetermined sequence of operations automatically.

An automaton with a finite number of states is called a Finite Automaton. This is a brief and

concise tutorial that introduces the fundamental concepts of Finite Automata, Regular Languages,

and Pushdown Automata before moving onto Turing machines and Decidability.

The term "Automata" is derived from the Greek word "αὐτόματα" which means "self-acting". An

automaton (Automata in plural) is an abstract self-propelled computing device which follows a

predetermined sequence of operations automatically.

An automaton with a finite number of states is called a Finite Automaton (FA) or Finite State

Machine (FSM).

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 3 Faculty : Shanu Gupta(CSE Department)

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 4 Faculty : Shanu Gupta(CSE Department)

Kleene Star

 The Kleene star, ∑*, is a unary operator on a set of symbols or strings, ∑, that gives the infinite

set of all possible strings of all possible lengths over ∑ including λ.

Representation − ∑* = ∑0 ∪ ∑1 ∪ ∑2 ∪……. where ∑p is the set of all possible strings of

length p.

Example − If ∑ = {a, b}, ∑* = {λ, a, b, aa, ab, ba, bb,………..}

Kleene Closure / Plus

Definition − The set ∑+ is the infinite set of all possible strings of all possible lengths over ∑

excluding λ.

Representation − ∑+ = ∑1 ∪ ∑2 ∪ ∑3 ∪…….

∑+ = ∑* − { λ }

Example − If ∑ = { a, b } , ∑+ = { a, b, aa, ab, ba, bb,………..}

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 5 Faculty : Shanu Gupta(CSE Department)

Language
Definition − A language is a subset of ∑* for some alphabet ∑. It can be finite or infinite.

Example − If the language takes all possible strings of length 2 over ∑ = {a, b}, then L = { ab,

aa, ba, bb }

Finite Automata

Finite Automata (FA) is the simplest machine to recognize patterns.

An automaton can be represented by a 5-tuple (Q, ∑, δ, q0, F), where –

FA is characterized into two types:

1) Deterministic Finite Automata (DFA)

In a DFA, for a particular input character, machine goes to one state only. A

transition function is defined on

every state for every input symbol. Also in DFA null (or ε) move is not allow,

i.e., DFA cannot change state

without any input character.

Q : Finite set of states.

∑ : set of Input Symbols.

q : Initial state.

F : set of Final States.

δ : Transition Function.

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 6 Faculty : Shanu Gupta(CSE Department)

Transition function δ as shown by the following table −

Present State Next State for Input 0 Next State for Input 1

a A B

b C A

c B C

Its graphical representation would be as follows −

For example, below DFA with ∑ = {0, 1} accepts all strings ending with 0.

DFA consists of 5 tuples {Q, ∑, q, F, δ}.

Q : set of all states.

∑ : set of input symbols. (Symbols which machine takes as input)

q : Initial state. (Starting state of a machine)

F : set of final state.

δ : Transition Function, defined as δ : Q X ∑ --> Q.

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 7 Faculty : Shanu Gupta(CSE Department)

One important thing to note is, there can be many possible DFAs for a pattern. A

DFA with minimum number of states is generally preferred.

2) Nondeterministic Finite Automata(NFA)

1. Null (or ε) move is allowed i.e., it can move forward without reading symbols.

2. Ability to transit to any number of states for a particular input.

However, these above features don’t add any power to NFA. If we compare both

in terms of power, both are equivalent.

Due to above additional features, NFA has a different transition function, rest is

same as DFA.

As you can see in transition function for any input including null (or &epsilon),

NFA can go to any state number of states.

The transition function δ as shown below −

Present State Next State for Input 0 Next State for Input 1

a a, b b

δ: Transition Function

δ: Q X (∑ U ε) --> 2 ^ Q.

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 8 Faculty : Shanu Gupta(CSE Department)

b C a, c

c b, c c

Its graphical representation would be as follows −

For example, below is a NFA for above problem

One important thing to note is, in NFA, if any path for an input string leads to a

final state, then the input

string accepted. For example, in above NFA, there are multiple paths for input

string “00”. Since, one of the

paths lead to a final state, “00” is accepted by above NFA.

Some Important Points:

1. Every DFA is NFA but not vice versa.

2. Both NFA and DFA have same power and each NFA can be translated into a

DFA.

3. There can be multiple final states in both DFA and NFA.

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 9 Faculty : Shanu Gupta(CSE Department)

3. NFA is more of a theoretical concept.

4. DFA is used in Lexical Analysis in Compiler.

DFA vs NDFA

The following table lists the differences between DFA and NDFA.

DFA NDFA

The transition from a state is to a single
particular next state for each input symbol.
Hence it is called deterministic.

The transition from a state can be to
multiple next states for each input
symbol. Hence it is called non-
deterministic.

Empty string transitions are not seen in DFA. NDFA permits empty string transitions.

Backtracking is allowed in DFA In NDFA, backtracking is not always
possible.

Requires more space. Requires less space.

A string is accepted by a DFA, if it transits to a
final state.

A string is accepted by a NDFA, if at least
one of all possible transitions ends in a
final state.

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 10 Faculty : Shanu Gupta(CSE Department)

 Epsilon nondeterministic finite automaton (NFA)

An epsilon nondeterministic finite automaton (NFA) has null or epsilon transitions from
one state to another. Epsilon NFA is also called a null NFA or an NFA lambda.

A regular expression for a language forms an epsilon NFA. This epsilon NFA then
converts to a simple NFA. We then use the simple NFA to make a deterministic finite
automaton (DFA).

Conversion of Epsilon-NFA to NFA
To remove the epsilon move/Null move from epsilon-NFA and to convert it into
NFA, we follow the steps mentioned below.

Figure – Vertex v1 and Vertex v2 having an epsilon move

Step-1: Consider the two vertexes having the epsilon move. Here in Fig.1 we have
vertex v1 and vertex v2 having epsilon move from v1 to v2.

Step-2: Now find all the moves to any other vertex that start from vertex v2 (other than
the epsilon move that is considering). After finding the moves, duplicate all the moves
that start from vertex v2, with the same input to start from vertex v1 and remove the
epsilon move from vertex v1 to vertex v2.

Step-3: See that if the vertex v1 is a start state or not. If vertex v1 is a start state, then
we will also make vertex v2 as a start state. If vertex v1 is not a start state, then there
will not be any change.

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 11 Faculty : Shanu Gupta(CSE Department)

Step-4: See that if the vertex v2 is a final state or not. If vertex v2 is a final state, then
we will also make vertex v1 as a final state. If vertex v2 is not a final state, then there
will not be any change. Repeat the steps(from step 1 to step 4) until all the epsilon
moves are removed from the NFA. Now, to explain this conversion, let us take an
example.

Example: Convert epsilon-NFA to NFA. Consider the example having states q0, q1, q2,
q3, and q4.

In the above example, we have 5 states named as q0, q1, q2, q3 and q4. Initially, we
have q0 as start state and q2 as final state. We have q1, q3 and q4 as intermediate
states.

Transition table for the above NFA is:

States/Input Input 0 Input 1 Input epsilon

q0 – q1 q2

q1 – q0 –

q2 q3 q4 –

q3 q2 – –

q4 q2 – –

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 12 Faculty : Shanu Gupta(CSE Department)

According to the transition table above,

state q0 on getting input 1 goes to state q1.

State q0 on getting input as a null move (i.e. an epsilon move) goes to state q2.

State q1 on getting input 1 goes to state q0.

Similarly, state q2 on getting input 0 goes to state q3, state q2 on getting input 1 goes
to state q4.

Similarly, state q3 on getting input 0 goes to state q2.

Similarly, state q4 on getting input 0 goes to state q2. We can see that we have an
epsilon move from state q0 to state q2, which is to be removed. To remove epsilon
move from state q0 to state q1, we will follow the steps mentioned below.

Step-1: Considering the epsilon move from state q0 to state q2. Consider the state
q0 as vertex v1 and state q2 as vertex v2.

Figure – State q0 as vertex v1 and state q2 as vertex v2

Step-2: Now find all the moves that starts from vertex v2 (i.e. state q2). After finding
the moves, duplicate all the moves that start from vertex v2 (i.e state q2) with the same
input to start from vertex v1 (i.e. state q0) and remove the epsilon move from vertex v1
(i.e. state q0) to vertex v2 (i.e. state q2). Since state q2 on getting input 0 goes to state
q3. Hence on duplicating the move, we will have state q0 on getting input 0 also to go
to state q3.

Similarly state q2 on getting input 1 goes to state q4. Hence on duplicating the move,
we will have state q0 on getting input 1 also to go to state q4.

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 13 Faculty : Shanu Gupta(CSE Department)

So, NFA after duplicating the moves is:

Figure – NFA on duplicating moves

Step-3: Since vertex v1 (i.e. state q0) is a start state. Hence we will also make vertex v2
(i.e. state q2) as a start state. Note that state q2 will also remain as a final state as we
had initially. NFA after making state q2 also as a start state is:

Figure – NFA after making state q2 as a start state

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 14 Faculty : Shanu Gupta(CSE Department)

Step-4: Since vertex v2 (i.e. state q2) is a final state. Hence we will also make vertex v1
(i.e. state q0) as a final state. Note that state q0 will also remain as a start state as we
had initially. After making state q0 also as a final state, the resulting

NDFA to DFA Conversion

Algorithm

Input − An NDFA

Output − An equivalent DFA

Step 1 − Create state table from the given NDFA.

Step 2 − Create a blank state table under possible input alphabets for the equivalent
DFA.

Step 3 − Mark the start state of the DFA by q0 (Same as the NDFA).

Step 4 − Find out the combination of States {Q0, Q1,... , Qn} for each possible input
alphabet.

Step 5 − Each time we generate a new DFA state under the input alphabet columns, we
have to apply step 4 again, otherwise go to step 6.

Step 6 − The states which contain any of the final states of the NDFA are the final states
of the equivalent DFA.

Example

Let us consider the NDFA shown in the figure below.

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 15 Faculty : Shanu Gupta(CSE Department)

q δ(q,0) δ(q,1)

a {a,b,c,d,e} {d,e}

b {c} {e}

c ∅ {b}

d {e} ∅

e ∅ ∅

Using the above algorithm, we find its equivalent DFA. The state table of the DFA
is shown in below.

Q δ(q,0) δ(q,1)

[a] [a,b,c,d,e] [d,e]

[a,b,c,d,e] [a,b,c,d,e] [b,d,e]

[d,e] [e] ∅

[b,d,e] [c,e] [e]

[e] ∅ ∅

[c, e] ∅ [b]

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 16 Faculty : Shanu Gupta(CSE Department)

[b] [c] [e]

[c] ∅ [b]

The state diagram of the DFA is as follows –

DFA Minimization

Algorithm
Step 1 – Remove aal dead state from given DFA.

Step 2 − All the states Q are divided in two partitions − final states and non-final
states and are denoted by P0. All the states in a partition are 0th equivalent. Take a
counter k and initialize it with 0.

Step 3 − Increment k by 1. For each partition in Pk, divide the states in Pk into two
partitions if they are k-distinguishable. Two states within this partition X and Y are k-

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 17 Faculty : Shanu Gupta(CSE Department)

distinguishable if there is an input S such that δ(X, S) and δ(Y, S) are (k-1)-
distinguishable.

Step 4 − If Pk ≠ Pk-1, repeat Step 2, otherwise go to Step 4.

Step 5 − Combine kth equivalent sets and make them the new states of the reduced DFA.

Example

Let us consider the following DFA –

q δ(q,0) δ(q,1)

a B c

b A d

c E f

d E f

e E f

f F f

Let us apply the above algorithm to the above DFA −

• P0 = {(c,d,e), (a,b,f)}
• P1 = {(c,d,e), (a,b),(f)}
• P2 = {(c,d,e), (a,b),(f)}

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 18 Faculty : Shanu Gupta(CSE Department)

Hence, P1 = P2.

There are three states in the reduced DFA. The reduced DFA is as follows −

Moore and Mealy Machines

Mealy Machine
A Mealy Machine is an FSM whose output depends on the present state as well as the
present input.

It can be described by a 6 tuple (Q, ∑, O, δ, X, q0) where −

• Q is a finite set of states.
• ∑ is a finite set of symbols called the input alphabet.
• O is a finite set of symbols called the output alphabet.
• δ is the input transition function where δ: Q × ∑ → Q
• X is the output transition function where X: Q × ∑ → O
• q0 is the initial state from where any input is processed (q0 ∈ Q).

The state table of a Mealy Machine is shown below −

Present state

Next state

input = 0 input = 1

State Output State Output

→ a B x1 c x1

B B x2 d x3

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 19 Faculty : Shanu Gupta(CSE Department)

C D x3 c x1

D D x3 d x2

The state diagram of the above Mealy Machine is −

Moore Machine
Moore machine is an FSM whose outputs depend on only the present state.

A Moore machine can be described by a 6 tuple (Q, ∑, O, δ, X, q0) where −

• Q is a finite set of states.
• ∑ is a finite set of symbols called the input alphabet.
• O is a finite set of symbols called the output alphabet.
• δ is the input transition function where δ: Q × ∑ → Q
• X is the output transition function where X: Q → O
• q0 is the initial state from where any input is processed (q0 ∈ Q).

The state table of a Moore Machine is shown below −

Present state
Next State

Output
Input = 0 Input = 1

→ a B c x2

b B d x1

c C d x2

VISION INSTITUTE OF TECHNOLOGY, Subject: Theory of Automata and
ALIGARH Formal Language

 pg. 20 Faculty : Shanu Gupta(CSE Department)

d D d x3

The state diagram of the above Moore Machine is –

Mealy Machine vs. Moore Machine
The following table highlights the points that differentiate a Mealy Machine from a Moore
Machine.

Mealy Machine Moore Machine

Output depends both upon the present
state and the present input

Output depends only upon the present
state.

Generally, it has fewer states than
Moore Machine.

Generally, it has more states than Mealy
Machine.

The value of the output function is a
function of the transitions and the
changes, when the input logic on the
present state is done.

The value of the output function is a
function of the current state and the
changes at the clock edges, whenever
state changes occur.

Mealy machines react faster to inputs.
They generally react in the same clock
cycle.

In Moore machines, more logic is required
to decode the outputs resulting in more
circuit delays. They generally react one
clock cycle later.

