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Syllabus 
Positive real function; definition and properties, Properties of LC, RC and RL driving point 

functions, Synthesis of LC, RC and RL driving point immittance functions using Foster and 

Cauer first and second forms. Filters -Image parameters: Image impedance, characteristics 

impedance, image transfer parameter, Passive and active filter fundamentals, Low pass filters, 

High pass (constant K type) filters, Introduction to active filters. 

Positive Real Function: 
The significance of positive real functions is that if the driving point immitance (i.e. admittance 

or impedance) is a positive real function then only it is physically realizable using passive R, 

L and C components. Hence immitance function must be checked for positive realness before 

synthesizing. 

For a function to be positive real function it has to satisfy the following basic properties, 

 The given function F(s) is real for real s. 

 The real part of F(s) is greater than or equal to zero, when the real part of s is greater than 

or equal to zero. 

 
 The function F(s) is rational function. 

The positive real function is also called Brune function. In addition to the basic properties, the 

positive real function has some more properties. 

 

Properties of Positive Real Function: 

Let  

The function F(s) is positive real function having following properties, 

1. The coefficients of the numerator and denominator polynomials N(s) and D(s) in F(s) are 

real and positive. 

Hence, 

 F(s) is real when s is real. 

 The complex poles and zeros of F(s) occur in complex conjugate pairs. 

 The scale factor, N = N = a0/b0 is real and positive. 

2. The poles and zeros of F(s) are having negative or zero real parts. 

3. The poles of F(s) on the imaginary (jω) axis must be simple. Their residues must be real and 

positive. The same statement is true for the poles of 1/F(s). 
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4. The degrees of the numerator and denominator polynomials in F(s) differ at the most by 1. 

So degrees m and n must differ at the most by 1. Thus the number of finite poles and finite 

zeros of F(s) differ at the most by 1. 

5. The terms of lowest degree in the numerator and denominator polynomials of F(s) differ in 

degree at most by 1. So F(s) has neither multiple poles nor zeros at the origin. 

6. If F(s) is positive real function then 1/F(s) is also positive real function. Thus for a network 

if driving point impedance function Z(s) is positive real then the driving point admittance 

function Y(s) = 1/Z(s) is also positive real. 

7. The sum of positive real functions is also positive real. If two impedances are in series, the 

sum of the impedances is positive real. Similarly if two admittances are in parallel, their 

addition gives positive real admittance. Note that the difference in two positive real functions 

is not necessarily a positive real function. 

These properties are nothing but necessary conditions for the given function to be positive real 

but are not sufficient conditions. 

Procedure for Testing a Function for Positive Realness: 

Let F(s) be the function to be tested for the positive realness, which is a ratio of two polynomials 

N(s) and D(s). Remove all the common factors in the numerator and the denominator before 

testing for the positive realness. 

The testing procedure can be divided as, 

1. Testing for necessary conditions 

2. Testing for necessary and sufficient conditions 

 

Inspection Test for Necessary Conditions:  

By inspecting the given function, the following requirements are tested, 

1. All the coefficients of different polynomials must be real and positive. 

2. The degrees of numerator and denominator polynomials differ at most by 1. 

3. Lowest degree in numerator and denominator differ at most by 1. 

4. The imaginary axis poles and zeros of F(s) must be simple in nature. No multiple pole or 

zero should lie on the imaginary axis. 

5. There should be no missing terms in numerator and denominator unless all even or all odd 

terms are missing. 

6. The poles and zeros of F(s) must be located in the left half of s-plane. 

7. There should not be multiple poles or zeros either at origin (s = 0) and/or at infinity (s = ∞). 

8. The simple poles on jω axis should have real and positive residues. 

 

Test for Necessary and Sufficient Conditions:  

The tests for necessary and sufficient conditions are, 

1. The function F(s) must be real when s is real. 
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2. If F(s) = N(s)/D(s) 

then N(s) + D(s) must be Hurwitz. 

For N(s) + D(s) to be Hurwitz, all the quotients obtained by expressing it in continued fraction 

expansion must be positive. Also the continued fraction expansion should not terminate 

abruptly. 

3. Re [F(jω)] ≥ 0 for all ω. 

The real part of F (jω) must be greater than equal to zero for all ω. 

To test this, separate the numerator and denominator polynomials into even and odd parts. 

 
Multiply numerator and denominator by m2 – n2 

 
It is known that, 

 Product of two even functions is an even function. 

 Product of two odd functions is an even function. 

 Product of an odd function and an even function is an odd function. 

So as m1 and m2 are even, m1 m2 is even. 

And n1 and n2 are odd, n1 n2 is even. 

Also m1 n2 and m2 n1 is odd as the product of even and odd function. 

Finally m2
2 and n2

2 are both even. 

Hence in the above equation of F(s), first part is even while the second part is odd. 

 
Hence substituting s =jω in the even part gives the real part of F(jω) while substituting s =jω 

in odd part gives imaginary part of F(s). 
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In most of the cases, the condition can be verified by factorising A (ω2). If factorization is not 

sufficient for the required conclusion then A (ω2) is plotted over sufficiently large range of ω 

and it is ensured that it is not negative. 

Thus the testing procedure for positive realness of a function can be summarized as, 
1. Check all the necessary conditions by inspection. 

2. For all the poles and zeros of F(s) to be in the left half of s-plane or on the imaginary axis, 

N(s) and D(s) polynomials must be Hurwitz. 

3. If F(s) has poles on imaginary axis, the residues at the poles must be real and positive. 

Find the partial fractions of F(s) where s = ± jω0 is the pair of poles on imaginary axis.

 
So coefficients k and k· which are complex conjugates of each other must be real and positive. 

4. Finally test that 

 
This can be done by factorising A (ω2). This also can be tested by plotting A (ω2) graph against 

ω2 or using Sturm’s theorem. 

 

 

Driving Point Immittance Function: 
The immitance function must be positive real function so that its synthesis can be done to obtain 

an electrical network, using passive elements. We have discussed the tests to confirm the 

positive realness of a given function. Let us study now how to synthesize the given Driving 

Point Immittance Function (impedance or admittance) which is positive real. 

There are three types of passive elements which are an inductor (L), a capacitor (C) and a 

resistor (R). A given function can be synthesized using any two types of passive elements. Thus 

synthesized network can be LC network, RC network or RL network. 
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A network using any two types of passive elements can be synthesized generally in two forms 

called, 

1. Foster form and 

2. Cauer form. 
These forms are used for the network realization because the network is realized using 

minimum number of passive elements using these basic forms. Hence these forms are 

called canonical or simple forms of realization. In each of these forms there are two sub 

forms. The foster form is subdivided as Foster I form and Foster II forms while the Cauer form 

is subdivided as Cauer I and Cauer II forms. 

 

The following table is useful while realizing the network by any of the four forms mentioned 

above 

 
Foster I Form: 

The Foster I form uses the partial fractions of the driving point impedance function Z(s). The 

partial fraction expansion gives the equation of Z(s) as summation of the various impedance 

functions. 

 
Thus a network can be realized by connecting the impedances Z1,Z2, ……..Zn in series. 

Each impedance individually can be a series combination or parallel combination of the 

elements, which is to be identified. The identification of various elements existing in the 

different impedance function can be done by referring the Table 7.1. While finding the partial 

fractions, make sure that the degree of numerator is less than the degree of denominator. In this 

form, number of times, we get the functions after partial fraction expansion as,

 
This can be synthesized by expressing it as 
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We know 

 
The addition of two admittances indicate that there are two branches in parallel.

 
Referring to the Table 7.1, Y1(s)  = s/A represents a capacitor of  1/A F while Y2(s)  = B/A 

represents conductance of B/A mho i.e. a resistance of  A/B ohms. Hence Z'(s) can be realized 

as parallel combination of R and C as shown in the Fig. 7.3. 

Note that this example illustrates how to synthesize a particular function obtained in the partial 

fraction form. It does not mean that every time Foster I form gives RC networks. 

Foster II Form: 

The Foster II form uses the partial fractions of the driving point admittance function Y(s) = 

1/Z(s). The partial fraction expansion gives the equation of Y(s) as summation of the various 

admittance functions. 

 
Thus a network can be realized by connecting the admittances Y1, Y2, …… Yn in parallel. 

Each admittance individually can be a series combination or parallel combination of the various 

elements. These combinations are to identified to realize the network. This can be easily done 

by referring the Table 7.1, as illustrated above. 

Cauer I Form: 

Basically Cauer form uses continued fraction expansion of the Driving Point Immittance 

Function. The Cauer I uses the continued fraction expansion of the driving point impedance 

function Z(s). In this form, the numerator and the denominator are arranged in the descending 

powers of s, starting from highest to lowest power of s. 
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This form gives the ladder structure of the network with alternate series and shunt arms. 

Hence this form of realization is also called ladder realization. 

The continued fraction expansion gives the form as, 

 
The continued fraction expansion can be obtained by the division and inversion procedure, 

used earlier for testing the Hurwitz polynomials. 

In the continued fraction form of Z(s), the quotient of first division gives an impedance which 

is a series arm and then the quotients give alternately Y(s) and Z(s) terms representing shunt 

and series arms respectively. 

The elements of each Z(s) and Y(s) obtained can be identified using the Table 7.1. 

Remember that if the degree of numerator is same or less than the denominator, there is 

possibility of getting negative coefficients in the continued fraction expansion. In such case 

restart with the inversion and first quotient in such case represents admittance Y(s) which is a 

shunt arm. The series arm is absent in such case. 

The Cauer I form is low pass structure of the network. 

If the driving point admittance function Y(s) is expressed in continued fraction expansion with 

division at start, first quotient represents admittance Y(s) in shunt arm and then, alternately 

impedances and admittances in series and shunt arms respectively. Starting with inversion in 

such case gives impedance Z(s) in series arm as the first quotient, and then alternately 

admittances and impedances in shunt and series arms. 

Cauer-II Form: 

The Cauer II form also uses continued fraction expansion of the driving point immittance 

function either Z(s) or Y(s). In this form, the numerator and the denominator are arranged in 

the ascending powers of s, starting from lowest to highest power of s. 

The continued fraction expansion gives the similar form as, 

 
In this form also, there is a possibility of getting negative coefficients in the expansion 

procedure. In such a case, restart with the inversion, which gives Y(s) as the first quotient which 

indicates shunt arm, without a series arm in the circuit. Similarly driving point admittance 

function Y(s) also can be synthesized using Cauer II form. 

The Cauer II form is basically high pass structure. 

https://www.eeeguide.com/wp-content/uploads/2019/11/Driving-Point-Immittance-Function-7.jpg
https://www.eeeguide.com/wp-content/uploads/2019/11/Driving-Point-Immittance-Function-8.jpg


VISION INSTITUTE OF TECHNOLOGY,                                          Subject: NAS 
ALIGARH                                            

Unit 5: Network Synthesis & Filters 
 

Page 8  Faculty: Shweta Singh  
+91-8392878633; shweta@vision.org.in 

 

Remember that if Y(s) is to be synthesized and expansion starts with the division, first quotient 

gives Y(s) in shunt arm and if starts with the inversion, first quotient gives Z(s) in series arm 

and vice versa for Z(s). 

LC Immittance Function: 
The LC Immittance Function can be LC impedance functions denoted as ZLC(s) or LC 

admittance functions denoted as YLC(s). 

A LC network does not contain power dissipative components i.e. resistances and only consists 

of reactive elements L and C components. Hence such network is also called a reactance 

network or lossless network. 

Consider a driving point impedance function of LC one port network represented as the ratio 

of two polynomials in s. 

 
Where m1, n1 are even and odd parts of N(s) while m2, n2 are the even and odd parts of D(s) 

respectively. 

For a purely reactive element jωL or 1/jωC, the real part is zero. 

 
We have seen that the real part of F(jω) is its even part given by, 

 
But real part must be zero for LC network. 

 
Thus to satisfy this equation we must have, 

 
So it can be concluded that the driving point impedance function of LC network is the ratio of 

odd to even polynomial or even to odd polynomial. This is a very important property of LC 

network. 

For example, 
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So poles at s = 0, ± j 2 

Zeros at s = ± j, ± j 3 

The pole zero plot is shown in the Fig. 7.4. 

 
From this impedance function of LC network, let us list the various other properties of LC 

networks. 

Properties of LC Immittance Function: 

Referring to the pole zero plot shown in the Fig. 7.4, the properties of ZLC(s) and YLC(s) 

functions can be stated as, 

1. The LC Immittance Function is always a ratio of odd to even or even to odd polynomials. 

2. The poles and zeros are simple. There are no multiple poles or zeros either at origin or 

infinity or at any point. 

3. The poles and zeros are located on the jω axis only. 

4. The poles and zeros interlace (alternate) each other on the jω axis. There are no consecutive 

poles or zeros on the jω axis. 

5. The imaginary poles and zeros occur in the form of complex conjugate pairs. 

6. The highest powers of numerator and denominator must differ by unity. 

7. The lowest powers of numerator and denominator must differ by unity. 

https://www.eeeguide.com/wp-content/uploads/2019/11/LC-Immittance-Function-5.jpg
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8. There must be either a pole or zero at the origin and infinity. As the function is the ratio of 

even to odd polynomials, if the highest power of numerator is 2m then of denominator is 

2m —1 which gives pole at ∞ or it can be 2m +1 which gives zero at ∞. And as lowest 

powers also differ by unity, there is pole or zero at the origin. 

9. Residues at the imaginary axis poles are real and positive. 

10. The number of elements required in any of the four forms of realization is equal to the 

highest power of s in the LC Immittance Function as a whole. 

11. The slope of the graph of reactance against frequency is always positive. 

We know that there is either pole or zero at the origin. 

Consider  

So there is pole at the origin. Let us obtain the graph of X(ω). At the starting pole at s= 0 i.e. ω 

= 0 the X(ω) is infinity. As ω increases, X(ω) also increases and at next critical frequency ω = 

ω2 where there is a zero, X(ω) becomes zero. As ω further increases from ω = ω2, X(ω) 

increases and becomes infinity at ω = ω3 where there is a pole. At this frequency, X(ω) 

suddenly changes the sign and goes from + ∞ to — ∞, such that as we pass through ω = ω3, 

slope of the graph always remains positive. It becomes zero at ω = ω4 where there is a zero. 

The nature continues such that the slope  d/dω [X(ω)] always positive. The nature is shown in 

the Fig. 7.5 for the Z(s) considered. 

 
Between ω1 and ω2, nature of X(ω) is capacitive while between ω2 and ω3 it is inductive. At 

ω3 = 2, it changes from inductive to capacitive suddenly so that slope of the graph remains 

always positive. 

For a zero at the origin, the reactance curve takes the form as shown in the Fig. 7.6. 

https://www.eeeguide.com/wp-content/uploads/2019/11/LC-Immittance-Function-7.jpg
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For a LC function,  

From the nature of the reactance curves shown in the Fig. 7.5 and 7.6 with pole at origin and 

zero at origin respectively, it can be seen that curve has to change its sign at the poles to 

maintain the positive slope. 

Hence to maintain the positive slope, the poles and zeros must separate each other and in such 

a way that the poles and the zeros alternate along the real frequency axis. This is 

called Separation Property or Foster Reactance Theorem for the reactance functions. 

Thus if  

then H is scale factor. Now ωz1 can be zero which gives zero at the origin or has finite existence 

if there is pole at the origin. 

According to the Reactance theorem pole and zero frequencies must satisfy the relation given 

by, 

 
Realization of Immitance Function of LC Networks: 

The realization of driving point immitance functions of LC networks can be done by any of the 

four forms discussed earlier. The forms which are used are, 

1. Foster I form 

2. Foster II form 

3. Cauer I form 

4. Cauer II form 
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RC Driving Point Impedance function: 
As the name indicates, the RC networks consist of only R and C components. There is no 

inductor in RC networks. The RC Driving Point Impedance function is denoted as ZRC(s). The 

properties of RC Driving Point Impedance function and the properties of driving point 

admittance function of RL network are identical. Thus the properties ZRC(s) and YRL(s) are 

same. There are no complex poles in RC network function. The poles and zeros alternate each 

other and are located in left half of s plane. To understand the properties of RC network function 

consider a driving point impedance function of RC network as, 

 
The poles are at s = 0, – 2 

The zeros are at s = –1, – 4 

The pole-zero plot is shown in the Fig. 7.11. 

 
Properties of RC Driving Point Impedance Function: 

Referring to the pole zero plot of ZRC(s) function considered, the various properties of RC 

Driving Point Impedance function can be stated as, 

1. The poles and zeros are simple. There are no multiple poles and zeros. 

2. The poles and zeros are located on negative real axis. 

3. The poles and zeros interlace (alternate) each other on the negative real axis. 

4. We know that the poles and zeros are called critical frequencies of the The critical frequency 

nearest to the origin is always a pole. This may be located at the origin. 

5. The critical frequency at a greatest distance away from the origin is always a zero, which 

may be located at ∞ also. 

6. The partial fraction expansion of ZRC(s) gives the residues which are always real and 

positive. 

7. There is no pole located at infinity. 

8. The slope of the graph of Z(σ) against σ is always negative. 

9. There is no zero at the origin. 

10. The value of ZRC(s) at s=0 is always greater than the value of ZRC(s) at s = ∞. 

 
It can, be seen that for a ZRC considered ZRC(0) = ∞ while ZRC(∞) = 1. 

Consider a simple RC network as shown in the Fig. 7.12. 
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Let us plot ZRC(σ) against σ where s = σ. 

 
To find the slope of ZRC(σ) against σ find d ZRC(σ)/dσ 

 
Thus the slope of ZRC(σ) against σ is always negative for any value of σ. 

The graph of Z(σ) against σ for the RC network function is shown in the Fig. 7.13. 
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ω1,ω2,ω3 and ω4 are the critical frequencies. At the critical frequencies like ω3, the Z(σ) changes 

its sign suddenly such that the slope always remains negative. The value of Z (∞) is constant 

so graph runs parallel to the σ axis, finally. 

The nature of Z (σ) against σ graph when there is no pole at the origin is shown in the Fig. 7.14. 

 
All the properties of driving point admittance function of RL network [YRL(s)] are exactly 

identical to the properties of driving point impedance function of RC network [ZRC(s)]. 

Realization of Impedance Function of RC Network: 

As mentioned earlier, the realization of ZRC(s) function can be achieved using Foster I, Foster 

II, cauer I or cauer II form. Remember that the number of elements are not equal to highest 

power of s in overall Z(s) for RC networks. 

RL Driving Point Impedance: 
The RL networks consist of only R and L components. There is no capacitor present in such 

networks. The RL Driving Point Impedance of such networks is denoted as ZRL(s). The 

properties of driving point impedance function of RL networks [ZRL(s)] and the driving point 

admittance function of RC networks [YRC (s)] are exactly identical. 

The RL impedance function is dual of RC admittance function. There are no complex poles in 

RL network functions and poles and zeros are located in left half of s-plane. 

Consider the RL Driving Point Impedance network as, 

 
The poles are at s = – 2 and – 4 while the zeros are at s = – 1 and – 3. 

The pole-zero plot is as shown in the Fig. 7.19. 
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Properties of RL Driving Point Impedance Functions:  

Referring to the pole zero plot of ZRL(s) function considered above, the various properties of 

RL, driving point impedance functions can be stated as, 

1. The poles and zeros are simple. There are no multiple poles and zeros. 

2. The poles and zeros are located on negative real axis. 

3. The poles and zeros interlace each other on the negative real axis. 

4. The poles and zeros are the critical frequencies. The critical frequency nearest to the origin 

is always a zero, which may be located at the origin. 

5. The critical frequency at a greatest distance away from the origin is always a pole, which 

may be located at infinity also. 

6. Partial fraction expansion of ZRL(s) gives the residues which are negative and real hence to 

obtain positive residues the expansion of ZRL(s)/s is obtained. 

7. There can not be a pole at the origin. 

8. The slope of the graph of z (σ) against σ is always positive. 

9. The value of ZRL(s) at s = 0 is always less than the value of ZRL(s)at s = ∞. 

 
For the example considered ZRL(0) = 3/8 while ZRL(∞) = 1. 

It can be easily verified from a simple RL network that the slope of the graph Z(σ) against σ is 

always positive. 

 
The graph of Z(σ) against σ for the RL network function without a zero at the origin is shown 

in the Fig. 7.20. 
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ω1,ω2,ω3 and ω4 are the critical frequencies. At the critical frequencies like ω2 and ω4 the sign 

of Z(σ) changes suddenly such that the slope always remains positive. 

 
The nature of Z(σ) against σ graph for the RL network function when there is a zero at 

the origin is shown in the Fig. 7.21. 

Realization of Impedance Function of RL Network: 

The realization of ZRL(s) function can be obtained using Foster I, Foster II, Cauer I and Cauer 

II forms. The number of elements are not equal to highest power of s in the overall Z(s) for RL 

networks. 
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Image Impedance 

It is the impedance which when connected to the input and the output of the transducer, it will 

make both the impedances equal at the input and the output terminal. It is basically the concept 

which is used in the field of the network analysis and design and also in the field of the filter 

design. It applies to the seen impedance which is determined by looking through the ports of 

the network. 

The Two-port network can be properly used to describe the concept of the image impedance in 

the better way. 

 

two port network 

The impedance zi1 – when considered from the port 1 

Zi2 –image impedance when considered from the port 2 

The image impedance will not be equal until the network is the symmetrical network or anti-

symmetrical with respect to the ports. 

Characteristic impedance 

The characteristics impedance also known as the surge impedance is usually considered in the 

case of the transmission line and is represented as Z0. The characteristics impedance is defined 

as the ratio of the amplitude of the voltage and the current taking the consideration of  the single 

wave through the line. The surge impedance is usually allocated through the transmission line 

with its geometry and the material. It is to be noted that this impedance is independent of the 

line length.SI unit – ohm 

Image transfer coefficient 

It is usually considered for the linear passive type of the two-port network, such network must 

be terminated with the image impedance of the network. Let 

V1 – voltage at the input terminal 

https://blog.oureducation.in/wp-content/uploads/2013/06/ww.jpg
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I1 – current at the input terminal 

V2 – voltage at the output terminal 

I2 – current at the input terminal 

Hence, the image transfer coefficient can be calculated as half the logarithm of the product of 

V1 andI1 divided by the product of the V2 and I2. 

Represented as, 

½ log ((V1 I1) / (V2 I2)) 
 

Filters  
A filter is a circuit that is designed to pass signals with desired frequencies and reject or 

attenuate the others. As a frequency-selective device, a filter can be used to limit the frequency 

spectrum of a signal to some specified band of frequencies. Filters are the circuits used to allow 

to us to select one desired signal out of a multitude of broadcast signals in the environment.  

Filters are classified in two types:-  Active filters  Passive filters  

A filter is a passive filter if it consist of only passive elements R, L and C.  

It is said to be an active filter if it consists of active elements (such as transistors and op amps) 

in addition to passive elements R, L and C. LC filters have been used in practical applications 

for more than eight decades.  

Passive filters are widely used in power system for harmonic mitigation. In general, they have 

shunt branches consisting of passive elements; such as inductors and capacitors which are 

respectively tuned to the predominant harmonics. Design procedure for this type of filter is also 

very simple.  

The design of a passive filter requires a precise knowledge of the harmonic producing load and 

of the power system. Because passive filters always provide reactive compensation to a degree 

dictated by the volt-ampere size and voltage of the capacitor bank used, they can in fact be 

designed for the double purpose of providing the filtering action and compensating power 

factor to the desired level.  

Thus, passive filter design must take into account expected growth in harmonic current source 

or load reconfiguration because it can otherwise be exposed to overloading, which can rapidly 

develop into extreme overheating and thermal breakdown.  

There are four types of filters whether passive or active:  

 Low-pass filters  

 High-pass filters  

 Band-pass filters  
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 Band-stop filters  

A low-pass filter passes low frequencies and stops high frequencies. A high-pass filter passes 

high frequencies and rejects low frequencies. A band-pass filter passes frequencies within a 

frequency band and blocks or attenuates frequencies outside the band. A band-stop filter passes 

frequencies outside a frequency band and blocks or attenuates frequencies within the band 

 

Low Pass Filter: 
The prototype T and π low pass filter sections are as shown in the Fig. 9.3. 

 
Design Impedance (R0): 

Here in low pass filter sections, 

Total series arm impedance Z1 = jωL 

Total shunt arm impedance Z2 = -j/ωC 

Hence, Z1 . Z2 = (jωL) (-j/ωC) = L/C which is real and constant. Hence sections are constant K 

sections so we can write, 

 
Reactance Curves and Cut-off Frequency Expression:  

As both T and π sections have same cut-off frequency, it is sufficient to calculate fc for the ‘T’ 

section only. 
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The reactance curves are as shown in the Fig. 9.4. 

 
From above characteristic it is clear that all the reactance curves have positive slope as all 

curves slope upward to the right side with increasing ω. 

The curves are on opposite sides of the frequency axis upto point A; while on the same side, 

from point A on wards. Hence all the frequencies upto point A give pass band and above point 

A give stop band. Thus point A marks cut-off frequency given by ω = ωc. 

At point A, ω = ωc, the curve for (X1/4 + X2) crosses the frequency axis, hence we can write, 

 
The algebraic approach to calculate cut-off frequency is as follows. 
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From above expression it is clear that, Z0T is real if ω2LC/4 < 1 and imaginary if ω2LC/4  > 1. 

Hence condition ω2LC/4 -1 = 0 gives expression, 

 
Thus, above prototype section passes all frequencies below ω = 2/√LC while attenuates all 

frequencies above this value. Therefore cut-off frequency of low pass filter is given by 

 
Above frequency comes out to be the same as calculated by reactance sketch method. 

Variation of Z0T and Z0π with Frequency:  

Consider expression 

 
From equation (2), we can write 

 
Similarly we can write, 
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Hence 

 
From equation (5), it is clear that as frequency increases from 0 to fc, Z0T decreases from R0 to 

0 in passband. For π section, from equation (6), it is clear that in pass band as frequency 

increases for 0 to fc, Z0π increases from R0 to ∞. 

The variation of Z0T and Z0π with frequency is as shown in the Fig. 9.5. 

 
Variation of Attenuation Constant α with Frequency:  

In pass band attenuation is zero. In stop band attenuation is given by, 

 
In stop band, as frequency f increases above fc, attenuation also increases. The variation of α 

with frequency is as shown in the Fig. 9.6. 
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Variation of Phase Constant β with Frequency: 

In stop band, phase constant β is always equal to π radian. In pass band where α = 0, the phase 

constant β is given by 

 
As frequency increases from 0 to fc, β also increases from 0 to π radian. The variation of β with 

frequency is as shown in the Fig. 9.7. 

 
Design Equations of Prototype Low Pass Filter: 

The design impedance R0 and cut-off frequency fc can be given in terms of L and C as follows. 

 
Dividing equation for R0 by fc, we get, 
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Multiplying equation for R0 and fc we get,

 
Equations (9) and (10) are called design equations for prototype low pass filter sections. 

 

High Pass Filter: 
The prototype high pass filter T and π sections are as shown in the Fig. 9.9. 

 
Design Impedance (R0): 

Total series arm impedance Z1 = -j/ωC 

Total shunt arm impedance Z2 = jωL 

Hence, Z1 . Z2 =(-j/ωC) (jωL) = L/C which is real and constant. Hence above sections are 

constant K sections. So we can write, 

 

 
Reactance Curves and Expression for Cut-off Frequency:  

As both T and π sections have same cut-off frequency, it is sufficient to calculate the cut-off 

frequency for the T section only. 
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The reactance curves are as shown in the Fig. 9.10. 

From above characteristics it is clear that all the reactance curves have positive slope as all 

curves slope upward to the right side with increasing ω. 

Here the curves are on the same side of the horizontal axis up to the point B, giving a stop band. 

For frequencies above point B, the curves are on opposite sides of the axis, giving pass band. 

Thus, point B gives cut-off frequency, represented as ω = ωc. 

At point B, ω = ωc, the curve for (X1/4 + X2) crosses the frequency axis, hence we can write, 

 
The algebraic approach to calculate cut-off frequency is as follows. 
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From above expression it is clear that, Z0T is real if 1/4ω2LC < 1 and imaginary if 1/4ω2LC > 

1. Hence condition 1 – 1/4ω2LC = 0 gives expression, 

 
Thus, above prototype section passes all frequencies above ω = 1/2√LC while attenuates all 

frequencies below this value. Therefore cut-off frequency of high pass filter is given by 

 
Above frequency comes out to be same as frequency calculated by reactance sketch method. 

Variation of Z0T and Z0π with Frequency:  

Consider expression for Z0T as 

 
From equation (2) we can write, 

 
Similarly we can write, 

 
Hence, 
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From equation (5), it is clear that as frequency f increases from fc to ∞ in pass band, Z0T also 

increases from 0 to R0. For π section, from equation (6), it is clear that as frequency increases 

from fc to ∞, Z0 decreases from ∞ to R0 in pass band. The variation of Z0T and Z0π with 

frequency is as shown in Fig. 9.11. 

 
Variation of Attenuation Constant (α) with Frequency:  

In pass band, attenuation is zero (α = 0). In stop band attenuation is given by 

 
In stop band, as frequency f increases from 0 to fc, attenuation decreases from ∞ to 0. The 

variation of attenuation constant α with frequency is as shown in the Fig. 9.12. 

 
Variation of Phase Constant β with Frequency:  

In stop band, phase constant β is always π radian. In pass band where α = 0, the phase angle β 

is given by 
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From the above equation it is clear that in Pass Band when frequency f increases from fc to ∞, 

β decreases to 0. The variation of phase constant β with frequency is as shown in the Fig. 9.13. 

 
Design Equations of Prototype High Pass Filter: 

The design impedance R0 and cut-off frequency fc for high pass filter section can be given in 

terms of L and C as follows 

 
Dividing equation for R0 by fc, we get, 

 
Multiplying equation for R0 and fc, we get, 

 
Equation (9) and (10) are called design equations of prototype high pass filter sections. 

Band Pass Filter: 
Band pass filter pass a certain range of frequencies (called as pass band) while attenuate all 

other frequencies. Such band pass filters can be obtained by connecting low pass filter sections 

in cascade with high pass filter sections as shown in Fig. 9.15. 

In above type of connection, the cut-off frequency of low pass filter section must be selected 

higher than that of high pass filter section. 

Although cascade connection of low pass filter and high pass filter sections functions properly 

as band pass filter, it is more economical to combine both sections in one single filter section. 

An alternative form of band pass filter can be obtained either as a T or π section if series arm 

contains a series resonant circuit while the shunt arm contains a parallel resonant circuit as 

shown in the Fig. 9.16 (a) and (b). 
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The band pass filter characteristics can be obtained by using conventional band pass filter 

(either T or π type) as shown in the Fig. 9.16, if the series resonant frequency of the series arm 

is selected same as anti resonant frequency of the shunt arm. Consider T type band pass filter 

section as shown in the Fig. 9.16 (a). Let the frequency of series and shunt arm be ω0 rad/sec. 

Then, for series arm, frequency of resonance is given by, 

 
Similarly for shunt arm, frequency of anti resonance is given by, 

 
From equations (1) and (2), for same resonant frequencies of series and shunt arms we can 

write, 

 
Design Impedance (R0): 

Total series arm impedance Z1 is given by 

 
Similarly, total shunt arm impedance Z2  is given by 
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Hence, Z1 Z2 = L2/C1 = L1/C2  which is real and constant. Hence above sections are constant k 

sections. So we can write, 

 
Reactance Curves and Expressions for Cut-off Frequencies: 

To verify the band pass characteristics, let Z1 = j X1 and Z2 =j X2. Similar to the reactance 

curves drawn for low pass filter section and high pass filter section, sketching reactances 

X1 and (X1/4 + X2) against frequency f as shown in the Fig. 9.17. 

 
From the above characteristics it is clear that the reactance curves for X1 and (X1/4 + X2) are 

on the same sides the axis below f1 and above f2. At the same time, the reactance curves 

between f1 and f2 are on opposite sides of frequency axis. Thus frequencies between f1 and 

f2 constitute a pass band ; while the frequencies below f1 and above f2 give stop band. Hence 

the section considered shows band pass filter characteristics where f1 and f2 are lower and upper 

cut-off frequencies of the filter. 
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In band pass filter, condition for cut-off frequency is, 

 
But from the condition of constant-k filter section, Z1 Z2 = R2

0 

 
From above equation (7) it is clear that the value of the series arm impedance Z1 can be obtained 

at two different cut-off frequencies namely f1 and f2. So at f = f1, Z1 = – j(2 R0) and at f = f2 , 

Z1 = + j(2 R0). Thus impedance Z1 at f1, i.e. lower cut-off frequency, is negative of the 

impedance Z1 at f2 i.e. upper cut-off frequency. Hence we can write, 

 
But from equation (1) we can write, 

 
Substituting value of (L1 C1) in above equation (8), we can write, 

 
Simplifying above equation, 
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Hence, above equation (9) indicates that frequency of resonance of the individual arms is the 

geometric mean of two cut-off frequencies: 

Variation of Z0T and Z0π, Attenuation Constant (α) and Phase Constant (β) 

with Frequency:  

The variations of Z0T and Z0π, attenuation constant (α) and phase shift (β) with frequency are 

as shown in the Fig. 9.18. (a), (b) and (c). Consider that the design impedance of band pass 

filter is R0 and cut-off Frequencies are f1 and f2. 
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Design Equations:  

Consider that the filter is terminated in design impedance R0 and the cut-off frequencies are 

f1 and f2. 

Then from equation (7), at the lower cut-off frequency f1, we can write, 
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But for band pass filter constant k section 

 
Substituting the value of C1 from equation (10), 

 
As f2

0 = f1 f2, we get 

 
From equation (6), we can write, 
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Substituting value of L1 from equation (11), 

 
From equation.(6), we can write, 

 
Substituting value of C1 from equation (10), 

 
Equations (10) to (13) are called design equations of prototype band pass filter sections. 

 

Band Stop Filter: 
Band Stop Filter stop a range of frequencies between two cut-off frequencies f1 and f2 while 

pass all the frequencies below f1 and above f2. Thus range of frequencies between f1 and 

f2 constitutes a stop band in which attenuation to the frequencies is infinite ideally. The 

frequencies below f1 and above f2 constitute two separate pass bands in which attenuation to 

the frequencies is zero ideally. 

The Band Stop Filter can be obtained by connecting low pass filter and high pass filter sections 

in parallel where cut-off frequency of the low pass filter section is less than that of the high 

pass filter section. But the economical form of the band elimination filter can be obtained by 

combining the low pass and high pass filter section if series, arm contains parallel resonant 

circuit while shunt arm contains series resonant circuit as shown in the Fig. 9.20 (a) and (b). 
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The band elimination characteristics can be obtained by using conventional Band Stop Filter 

(either T or π type) as shown in the Fig. 9.20, if the series resonant frequency of the shunt arm 

is selected same as the parallel resonant frequency of the series arm. Consider ‘T’ type band 

elimination filter section as shown in the Fig. 9.20(a). 

Let the frequency of the series and shunt arm be ω0 rad/sec. Then for series arm, frequency of 

anti-resonance is given by, 

 
Similarly, for shunt arm, frequency of resonance is given by, 

 
From equations (1) and (2), for same resonant frequencies of series and shunt arm resonant 

circuit we can write, 

 
Design Impedance (R0): 

Total series arm impedance is given by, 
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Similarly, total shunt arm impedance Z2 is given by, 

 
Hence Z1Z2 = L2/C1 = L2/C2 which is real and constant. Hence above sections are constant k 

sections. So we can write, 

 
Reactance Curves and Expressions for Cut-off Frequencies:  

To verify the band elimination characteristics, let Z1 =j X1 and Z2 =j X2. The reactance curves 

of X1 and X1/4 + X2 against frequency are as shown in the Fig. 9.21. 
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From the above characteristics it is clear that the reactance curves for X1 and (X1/4 + X2) are 

on the same sides of the frequency axis between f1 and f2 which indicates stop band. These 

curves are on opposite sides of the axis below f1 and above f2 which indicates two pass band. 

Hence for the given section, the characteristics are of band elimination filter where f1 and f2 are 

the cut-off frequencies. 

In Band Stop Filter, the condition for cut-off frequencies is given by 

 

 
But from the condition of constant K filter section, Z1Z2 = R2

0 

 
From above equation it is clear that the value of the series arm impedance Z1 can be obtained 

at two different cut-off frequencies namely f1 and f2. So at f = f1, Z1 = + j(2 R0) and at f = f2, 

Z1 = -j(2 R0). Thus impedance Z1 at f1, i.e. at lower cut-off frequency, is negative of the 

impedance Z1 at f2 i.e. upper cut-off frequency. Hence we can write, 

 
But from equation (1), frequency of resonance is given by 

 
Substituting value of (L1 C1 ) in above equation, we can write, 

 
Simplifying above equation, 
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Hence, above equation (9) indicates that in band elimination filter, the frequency of resonance 

of the individual arms is the geometric mean of two cut-off frequencies. 

Variation of Z0T and Z0π, Attenuation Constant (α), Phase Constant (β) with 

Frequency:  

The variations of Z0T  and Z0π,attenuation constant (α) and phase shift (β) are as shown in the 

Fig. 9.22 (a), (b) and (c) respectively. Consider that f1 and f2 are two cut-off frequencies and 

R0 is the design impedance of the Band Stop Filter. 
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Design Equations:  

Consider that a band elimination filter with two cut-off frequencies f1 and f2 is terminated in 

design impedance R0. Then, from equation (7), at lower cut-off frequency f1, we can write, 
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For band elimination filter constant K section, frequency of resonance in series arms is given 

by, 

 
Substituting value of L1 in above equation, 

 
From equation (6) we can write, 
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Substituting value of L1 from equation (10), 

 
Similarly from equation (6) we can write, 

 
Substituting value of C1 from equation (11), 

 
Equations (10) to (13) are called design equations of prototype band elimination filter sections. 
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