VISION INSTITUTE OF TECHNOLOGY, ALIGARH

UNIT 4: Three Phase Transformers

UNIT 4

Three Phase Transformers: Construction, Three phase transformer, phasor groups and their connections, open delta connection, three phase to 2 phase and their applications, Three winding transformers. Parallel operation of single phase and three phase transformers and load sharing.

OUTCOMES

1. Three Phase Transformers: Construction

- Understand core types, insulation methods, cooling techniques, and mechanical design of three-phase transformers.
- 2. Three Phase Transformer Phasor Groups and Their Connections
 - Identify phasor groups, understand different connection types (Y-Y, Δ-Δ, Y-Δ, Δ-Y), phase shifts, and perform vector group testing.

3. Open Delta Connection (V-connection)

- Comprehend the open delta configuration, its applications, limitations, and power rating calculations.
- 4. Three Phase to Two Phase Conversion and Applications
 - Learn the Scott-T connection method, its industrial applications, and design considerations for three-phase to two-phase conversion.
- 5. Three Winding Transformers
 - Understand the construction, design, applications, and equivalent circuit representation of three-winding transformers.

6. Parallel Operation of Single Phase and Three Phase Transformers and Load Sharing

• Grasp conditions for parallel operation, principles of load sharing, techniques for load distribution, and methods for testing and troubleshooting.

VISION INSTITUTE OF TECHNOLOGY, ALIGARH

Three Phase Transformers: Construction

1. Understanding Transformer Core Types:

- Core Type:
 - **Construction**: Consists of three legs (one for each phase) with two yokes connecting them at the top and bottom. The primary and secondary windings are placed around each leg.
 - Advantages: Simpler design, easier to manufacture, and often used for lower voltage applications.
 - **Applications**: Common in smaller power transformers and distribution transformers.
- Shell Type:
 - **Construction**: Features a central core with two outer legs. The windings are placed around the central leg, and the magnetic path is through the outer legs and back through the central leg.
 - Advantages: Better magnetic shielding, reduced leakage flux, and better shortcircuit strength.
 - **Applications**: Often used for high-voltage and high-capacity transformers.

2. Insulation Methods:

- **Materials**: Common insulating materials include paper, pressboard, and oil. Modern transformers also use synthetic materials like epoxy resin and polymer composites.
- Techniques:
 - **Layer Insulation**: Insulating materials are placed between winding layers to prevent electrical contact.
 - End-turn Insulation: Extra insulation is applied at the winding ends to handle higher electric stress.
 - **Oil Immersion**: Windings are immersed in insulating oil, which serves both as an insulator and a coolant.

3. Cooling Techniques:

- Oil-Immersed Cooling:
 - **ONAN (Oil Natural Air Natural)**: The simplest method where natural convection circulates the oil and air.
 - **ONAF (Oil Natural Air Forced)**: Fans are used to force air over the radiators, enhancing cooling.
 - **OFWF (Oil Forced Water Forced)**: Oil is pumped through a heat exchanger cooled by water.
- Air-Cooled Cooling:
 - **Dry-Type Transformers**: Utilize ambient air for cooling, with or without fans to enhance air circulation.
 - Advantages: Suitable for indoor use and areas where fire safety is a concern.
- Radiators:
 - **Function**: Extend the surface area for heat dissipation. Oil circulates through the radiators to release heat to the surrounding air.

4. Mechanical Design:

VISION INSTITUTE OF TECHNOLOGY, **ALIGARH**

- Core Clamping: Ensures the core laminations are tightly clamped to reduce vibration and noise, and to prevent movement during operation.
- Tank Design: The transformer tank must be robust to contain the insulating oil and withstand internal pressures. Often equipped with conservators to manage oil expansion.
- Bushing Design: Insulated bushings are used to bring high-voltage connections through the transformer tank while maintaining insulation and preventing leaks.
- Winding Support: Windings are supported to withstand mechanical stresses due to short circuits and operational vibrations. Proper support also helps in maintaining the integrity of the insulation system.

Three Phase Transformer Phasor Groups and Their Connections

1. Phasor Groups Identification:

- Phasor Groups: Transformers are categorized into different phasor groups based on their winding connections and the phase displacement between primary and secondary sides. Common groups include Dy11, Yd1, etc.
 - **Dy11**: Delta primary, star secondary, 30° lag phase shift.
 - Yd1: Star primary, delta secondary, 30° lead phase shift. 0
- Significance: Understanding these groups helps in ensuring compatibility when connecting transformers in parallel or within a network.

2. Connection Types:

- Star-Star (Y-Y):
 - **Configuration**: Both primary and secondary windings are connected in a star.
 - Advantages: Neutral point availability, suitable for long-distance transmission.
 - Disadvantages: Can result in voltage imbalances if loads are not balanced. 0
- Delta-Delta (Δ - Δ):
 - **Configuration**: Both primary and secondary windings are connected in a delta.
 - o Advantages: No neutral needed, better handling of unbalanced loads, no phase shift.
 - **Disadvantages**: Higher cost due to more windings and insulation.
- Star-Delta (Y-Δ):
 - **Configuration**: Primary winding in star, secondary in delta.
 - Advantages: No neutral point required on the secondary side, commonly used in distribution transformers.
 - **Disadvantages**: 30° phase shift must be considered in system design.
- Delta-Star (∆-Y):
 - **Configuration**: Primary winding in delta, secondary in star.

VISION INSTITUTE OF TECHNOLOGY,

- Advantages: Provides a neutral point on the secondary side, suitable for stepping down voltage.
- **Disadvantages**: 30° phase shift, careful system design needed.

3. Phase Shift Understanding:

- **Phase Shift**: Transformers with different connections introduce phase shifts (e.g., 0°, ±30°) between primary and secondary sides. This affects how they can be connected in parallel and how they interact with the rest of the power system.
 - **Impact**: Phase shifts can lead to complications in synchronization and load sharing if not properly managed.

4. Vector Group Testing:

- **Purpose**: Ensures transformers are correctly connected and identifies the phasor group, which is critical for parallel operation.
- **Procedure**: Apply a three-phase voltage to the primary, measure the secondary voltages, and compare them to determine the phase relationship.

Open Delta Connection (V-connection)

1. Open Delta Configuration:

- **Construction**: Uses two transformers instead of three, connected in a delta configuration.
- Working Principle: The open delta connection can provide three-phase power, albeit at a reduced capacity compared to a full delta configuration.

2. Applications and Limitations:

- Applications:
 - **Emergency Use**: When one transformer in a delta connection fails, the remaining two can continue to provide power.
 - **Cost Savings**: In situations where full capacity is not always needed, using an open delta can save on initial costs.
- Limitations:
 - **Reduced Capacity**: Only delivers 57.7% of the power capacity of a full delta connection.
 - **Unbalanced Load Handling**: Less effective at handling unbalanced loads compared to a full delta connection.

3. Calculation of Ratings:

- **Effective Power Rating**: The capacity of an open delta connection is approximately 86.6% of the rating of two transformers in full delta configuration.
- Formula: $P_{opendelta} = P_{fulldelta} imes rac{2}{\sqrt{3}} pprox P_{fulldelta} imes 0.577$

• **Example**: If the full delta rating is 100 kVA, the open delta rating would be approximately 57.7 kVA.

Three Phase to Two Phase Conversion and Their Applications

Scott-T Connection:

- **Method**: The Scott-T connection uses two transformers to convert three-phase power into two-phase power. One transformer (main transformer) is connected between two phases of the three-phase system, while the other transformer (teaser transformer) is connected between one of those phases and the neutral point.
- **Configuration**: The main transformer is typically connected to phases A and C, and the teaser transformer is connected between phase B and a tap point on the main transformer.
- Purpose: This method achieves a balanced two-phase output from a three-phase input.

Applications:

- **Industrial Use**: Conversion is often required for older two-phase equipment and specific types of motor drives that are designed for two-phase power.
- **Railway Electrification**: Some rail systems use two-phase power, and the Scott-T connection facilitates this from a three-phase supply.
- **Specialized Equipment**: Certain industrial processes and older machinery that were designed for two-phase operation continue to use this conversion.

Design Considerations:

- **Transformer Taps**: Accurate tap settings on the transformers are crucial to maintain phase balance and voltage levels.
- Voltage Ratings: Transformers must be designed to handle the input and output voltage ratings specific to the application.
- Load Balance: Proper design ensures that loads on the two-phase system are balanced to avoid overloading the transformers.

Three Winding Transformers

Construction and Design:

- **Windings**: Three-winding transformers have three sets of windings primary, secondary, and tertiary. The tertiary winding is usually connected in delta to provide stabilization.
- **Core**: The core structure is designed to accommodate the three windings, ensuring minimal flux leakage and efficient magnetic coupling.
- **Insulation**: Enhanced insulation is required due to the presence of three sets of windings and their interaction.

VISION INSTITUTE OF TECHNOLOGY, ALIGARH

Applications:

- Power Stations: Used for voltage regulation and load distribution between different sections of the power grid.
- Substations: Facilitate connection between different voltage levels and improve system flexibility.
- Industrial Applications: Support multiple voltage requirements within industrial plants, • allowing for efficient distribution and regulation of power.

Equivalent Circuit Representation:

- Circuit Model: Represents the transformer with equivalent impedances for each winding, along with mutual inductances.
- Analysis: Helps in understanding voltage regulation, power losses, and load sharing characteristics under various operating conditions.

Parallel Operation of Single Phase and Three Phase Transformers and Load Sharing

Conditions for Parallel Operation:

- Voltage Ratios: Transformers must have identical voltage ratios to ensure proper voltage levels across all phases.
- Impedance Matching: The impedance of the transformers should be similar to ensure balanced load sharing.
- Phase Sequence: The phase sequence of all transformers must be the same to prevent phase mismatches.

Load Sharing Principles:

- **Impedance Ratio**: Load sharing is proportional to the impedance ratios of the transformers; lower impedance transformers will carry more load.
- Current Distribution: Proper load sharing ensures that each transformer carries its share of the load current based on its capacity.

Parallel Operation Techniques:

- Voltage Matching: Adjust tap changers to match the output voltages of the transformers.
- Current Sharing: Use of current sharing techniques such as load ratio control to distribute loads evenly.

Testing and Troubleshooting:

- **Compatibility Testing**: Verify that transformers meet the conditions for parallel operation by checking voltage ratios, impedance, and phase sequence.
- Troubleshooting: Identify and resolve issues such as circulating currents, unbalanced loads, and incorrect connections to ensure stable and efficient parallel operation.