INTRODUCTION

Overview:

From the beginning of history, human sensitivity has revealed an urge for mobility leading to a measure of Society's progress. The history of this mobility or transport is the history of civilization. For any country to develop with right momentum modern and efficient Transport as a basic infrastructure is a must. **Transport** (British English) or **transportation** (American English) is the movement of people and goods from one place to another. The term is derived from the Latin *trans* ("across") and *portare* ("to carry").

Means of Transport:

Fig.1.1 Means of Transport

Advantage and Disadvantage Different Modes of Transport:

(A) Road Transport

Advantages	Disadvantages
1. Less Capital Outlay	1. Seasonal Nature
2. Door to Door Service	2. Accidents and Breakdowns
3. Service in Rural Areas	3. Unsuitable for Long Distance and Bulky
4. Flexible Service	Traffic
5. Suitable for Short Distance	4. Slow Speed
6. Lesser Risk of Damage in Transit	5. Lack of Organization
7. Saving in Packing Cost	
8. Rapid Speed	
9. Less Cost	
10. Private Owned Vehicles	
11. Feeder to other Modes of Transport	

(B) Railway Transport

Advantages	Disadvantages
1. Dependable	1. Huge Capital Outlay
2. Better Organised	2. Lack of Flexibility
3. High Speed over Long Distances	3. Lack of Door to Door Service
4. Suitable for Bulky and Heavy Goods	4. Monopoly
5. Cheaper Transport	5. Unsuitable for Short Distance and Small
6. Safety	Loads
7. Larger Capacity	6. Booking Formalities
8. Public Welfare	7. No Rural Service
9. Administrative Facilities of Government	8. Under-utilised Capacity
10. Employment Opportunities	9. Centralised Administration

(C) Air Transport

Advantages	Disadvantages
1. High Speed	1. Very Costly
2. Comfortable and Quick Services	2. Small Carrying Capacity
3. No Investment in Construction of Track	3. Uncertain and Unreliable
4. No Physical Barriers	4. Breakdowns and Accidents
5. Easy Access	5. Large Investment
6. Emergency Services	6. Specialised Skill
7. Quick Clearance	7. Unsuitable for Cheap and Bulky Goods
8. Most Suitable for Carrying Light Goods of	8. Legal Restrictions
High Value	
9. National Defence	
10. Space Exploration	

Elements of transport:

The movement of goods or passenger traffic, through rail, sea, air or road transport requires adequate infrastructure facilities for the free flow from the place of origin to the place of destination. Irrespective of modes, every transport system has some common elements:

- a) Vehicle or carrier to carry passenger or goods
- b) Route or path for movement of carriers
- c) Terminal facilities for loading and unloading of goods and passengers from carriers
- d) Prime Mover
- e) Transit time and cost
- f) Cargo

These elements influence the effectiveness of different modes of transport and their utility to users.

• Vehicles: The dimension of vehicles, its capacity and type are some of the factors, which influence the selection of a transport system for movement of goods from one place to the other.

• **Routes:** Routes play an important role in movement of carriers from one point to another point. It may be surface roads, navigable waterways and roadways. Availability of well-designed and planned routes without any obstacle for movement of transport vehicles in specific routes, is a vital necessity for smooth flow of traffic.

• **Terminal Facilities:** - The objective of transportation can't be fulfilled unless proper facilities are available for loading and unloading of goods or entry and exit of passengers from carrier. Terminal facilities are to be provided for loading and unloading of trucks, wagons etc on a continuous basis.

• **Prime Mover:** - The power utilized for moving of vehicles for transportation of cargo from one place to another is another important aspect of the total movement system.

• **Transit time and cost:** - Transportation involve time and cost. The time element is a valid factor for determining the effectiveness of a particular mode of transport. The transit time of available system of transportation largely determines production and consumption pattern of perishable goods in an economy.

• **Cargo:** - Transportation basically involves movement of cargo from one place to another. Hence, nature and size of cargo constitute the basis of any goods transport system.

Major disciplines of transportation:

Transportation engineering can be broadly consisting of the four major parts:

- 1. Transportation Planning
- 2. Geometric Design
- 3. Pavement Design
- 4. Traffic Engineering

HIGHWAY DEVELOPMENT IN INDIA

Overview:

Road network provides the arterial network to facilitate trade, transport, social integration and economic development. It facilitates specialization, extension of markets and exploitation of economies of scale. It is used for the smooth conveyance of both people and goods. Transportation by road has the advantage over other means of transport because of its easy accessibility, flexibility of operations, door-to-door service and reliability. Consequently, passenger and freight movement in India over the years have increasingly shifted towards roads vis-à-vis other means of transport.

History of highway engineering:

The history of highway engineering gives us an idea about the roads of ancient times. Roads in Rome were constructed in a large scale and it radiated in many directions helping them in military operations. Thus they are considered to be pioneers in road construction. In this section we will see in detail about Ancient roads, Roman roads, British roads, French roads etc.

Ancient Roads:

The most primitive mode of transport was by foot. These human pathways would have been developed for specific purposes leading to camp sites, food, streams for drinking water etc. The invention of wheel in Mesopotamian civilization led to the development of animal drawn vehicles. To provide adequate strength to carry the wheels, the new ways tended to follow the sunny drier side of a path. After the invention of wheel, animal drawn vehicles were developed and the need for hard surface road emerged. Traces of such hard roads were obtained from various ancient civilization dated as old as 3500 BC. The earliest authentic record of road was found from Assyrian empire constructed about 1900 BC.

Roman roads:

The earliest large scale road construction is attributed to Romans who constructed an extensive system of roads radiating in many directions from Rome. Romans recognized that the fundamentals of good road construction were to provide good drainage, good material and good workmanship. Their roads were very durable, and some still exist. The roads were bordered on both sides by longitudinal drains. A typical cross section is shown in Fig.2.1. This was a raised formation up to a 1 meter high and 15 m wide and was constructed with materials excavated during the side drain construction. This was then topped with a sand leveling course. In the case of heavy traffic, a surface course of large 250 mm thick hexagonal stones were provided They

Mixed lime and volcanic puzzolana to make mortar and they added gravel to this mortar to make concrete. Thus concrete was a major Roman road making innovation.

Fig.2.1 Roman roads

French roads:

The significant contributions were given by Tresaguet in 1764 and a typical cross section of this road is given in Figure 2.2. He developed a cheaper method of construction than the lavish and locally unsuccessful revival of Roman practice. The pavement used 200 mm pieces of quarried stone of a more compact form and shaped such that they had at least one at side which was placed on a compact formation. Smaller pieces of broken stones were then compacted into the spaces between larger stones to provide a level surface. Finally the running layer was made with a layer of 25 mm sized broken stone. All this structure was placed in a trench in order to keep the running surface level with the surrounding country side. This created major drainage problems which were counteracted by making the surface as impervious as possible, cambering the surface and providing deep side ditches.

Fig. 2.2. French roads

British roads:

The British government also gave importance to road construction. The British engineer John

Macadam introduced what can be considered as the first scientific road construction method. Stone size was an important element of Macadam recipe. By empirical observation of many roads, he came to realize that 250 mm layers of well compacted broken angular stone would provide the same strength a better running surface than an expensive pavement founded on large stone blocks. Thus he introduced an economical method of road construction. A typical cross section of British roads is given in Fig. 2.3.

Fig. 2.3. British roads

Modern roads:

The modern roads by and large follow Macadam's construction method. Use of bituminous concrete and cement concrete are the most important developments. Development of new equipments helps in the faster construction of roads. Many easily and locally available materials are tested in the laboratories and then implemented on roads for making economical and durable pavements.

Road Development in India:

Excavations in the sites of Indus valley revealed the existence of planned roads in India as old as 2500-3500 BC. The Mauryan kings also built very good roads. During the time of Mughal period, roads in India were greatly improved. Roads linking North-West and the Eastern areas through gangetic plains were built during this time. The construction of Grand-Trunk road connecting North and South is a major contribution of the British.

Modern developments:

The First World War period and that immediately following it found a rapid growth in motor transport. So need for better roads became a necessity. For that, the Government of India appointed a committee called Road development Committee with Mr. M.R. Jayakar as the chairman. This committee came to be known as Jayakar committee.

Jayakar Committee

In 1927 Jayakar committee for Indian road development was appointed. The major recommendations and the resulting implementations were:

- ✓ Committee found that the road development of the country has become beyond the capacity of local governments and suggested that Central government should take the proper charge considering it as a matter of national interest.
- ✓ They gave more stress on long term planning program, for a period of 20 years (hence called twenty year plan) that is to formulate plans and implement those plans within the next 20 years.
- ✓ One of the recommendations was the holding of periodic road conferences to discuss about road construction and development. This paved the way for the establishment of a semi-official technical body called Indian Road Congress (IRC) in 1934
- ✓ The committee suggested imposition of additional taxation on motor transport which includes duty on motor spirit, vehicle taxation, and license fees for vehicles plying for hire. This led to the introduction of a development fund called Central road fund in 1929. This fund was intended for road development.
- ✓ The committee suggested imposition of additional taxation on motor transport which includes duty on motor spirit, vehicle taxation, and license fees for vehicles plying for hire. This led to the introduction of a development fund called Central road fund in 1929. This fund was intended for road development.

Nagpur road congress 1943:

A twenty year development program for the period (1943-1963) was finalized. It was the first attempt to prepare a co-ordinated road development program in a planned manner.

The roads were divided into four classes:

- National highways which would pass through states, and places having national importance for strategic, administrative and other purposes.
- State highways which would be the other main roads of a state.
- District roads which would take traffic from the main roads to the interior of the district. According to the importance, some are considered as major district roads and the remaining as other district roads.
- > Village roads which would link the villages to the road system.

The committee planned to construct 2 lakh km of road across the country within 20 years. They

recommended the construction of star and grid pattern of roads throughout the country. One of the objective was that the road length should be increased so as to give a road density of 16kms per 100 sq.km

Bombay road congress 1961:

The length of roads envisaged under the Nagpur plan was achieved by the end of it, but the road system was deficient in many respects. Accordingly a 20-year plan was drafted by the Roads wing of Government of India, which is popularly known as the Bombay plan. The highlights of the plan were:

- It was the second 20 year road plan (1961-1981)
- > The total road length targeted to construct was about 10 lakhs.
- > Rural roads were given specific attention.
- They suggested that the length of the road should be increased so as to give a road density of 32kms/100 sq.km
- > The construction of 1600 km of expressways was also then included in the plan.

Lucknow road congress 1984:

Some of the salient features of this plan are as given below:

- This was the third 20 year road plan (1981-2001). It is also called Lucknow road plan.
- It aimed at constructing a road length of 12 lakh kilometers by the year 1981 resulting in a road density of 82kms/100 sq.km
- The plan has set the target length of NH to be completed by the end of seventh, eighth and ninth five year plan periods.
- It aims at improving the transportation facilities in villages, towns etc. such that no part of country is farther than 50 km from NH.
- One of the goals contained in the plan was that expressways should be constructed on major traffic corridors to provide speedy travel.
- Energy conservation, environmental quality of roads and road safety measures were also given due importance in this plan.

Current Scenario:

About 60 per cent of freight and 87 per cent passenger traffic is carried by road. Although National Highways constitute only about 2 per cent of the road network, it carries 40 per cent of

the total road traffic. Easy availability, adaptability to individual needs and cost savings are some of the factors which go in favour of road transport. Road transport also acts as a feeder service to railway, shipping and air traffic. The number of vehicles has been growing at an average pace of around 10 per cent per annum. The share of road traffic in total traffic has grown from 13.8 per cent of freight traffic and 15.4 per cent of passenger traffic in 1950-51 to an estimated 62.9 per cent of freight traffic and 90.2 per cent of passenger traffic by the end of 2009-10. The rapid expansion and strengthening of the road network, therefore, is imperative, to provide for both present and future traffic and for improved accessibility to the hinterland.

HIGHWAY PLANNING

Overview:

Highway design is only one element in the overall highway development process. Historically, detailed design occurs in the middle of the process, linking the preceding phases of planning and project development with the subsequent phases of right-of-way acquisition, construction, and maintenance. It is during the first three stages, planning, project development, and design, that designers and communities, working together, can have the greatest impact on the final design features of the project. In fact, the flexibility available for highway design during the detailed design phase is limited a great deal by the decisions made at the earlier stages of planning and project development.

The Stages of Highway Development:

Although the names may vary by State, the five basic stages in the highway development process are: planning, project development (preliminary design), final design, right of way, and construction. After construction is completed, ongoing operation and maintenance activities continue throughout the life of the facility.

Fig.3.1 Process of Highway Planning

✓ Planning

The initial definition of the need for any highway or bridge improvement project takes place during the planning stage. This problem definition occurs at the State, regional, or local level, depending on the scale of the proposed improvement. This is the key time to get the public involved and provide input into the decision making process. The problems identified usually fall into one or more of the following four categories:

- 1. The existing physical structure needs major repair/replacement (structure repair).
- 2. Existing or projected future travel demands exceed available capacity, and access to transportation and mobility need to be increased (capacity).
- 3. The route is experiencing an inordinate number of safety and accident problems that can only be resolved through physical, geometric changes (safety).
- 4. Developmental pressures along the route make a reexamination of the number, location, and physical design of access points necessary (access).

✓ Factors to Consider During Planning

It is important to look ahead during the planning stage and consider the potential impact that a proposed facility or improvement may have while the project is still in the conceptual phase. During planning, key decisions are made that will affect and limit the design options in subsequent phases.

Fig. 3.2 Factors to consider in planning.

✓ Project Development

After a project has been planned and programmed for implementation, it moves into the project development phase. At this stage, the environmental analysis intensifies. The level of environmental review varies widely, depending on the scale and impact of the project. It can range from a multiyear effort to prepare an Environmental Impact Statement (a comprehensive document that analyzes the potential impact of proposed alternatives) to a modest environmental review completed in a matter of weeks. Regardless of the level of detail or duration, the product of the project development process generally includes a description of the location and major design features of the recommended

Project that is to be further designed and constructed, while continually trying to avoid, minimize, and mitigate environmental impact.

✓ Final Design

After a preferred alternative has been selected and the project description agreed upon as stated in the environmental document, a project can move into the final design stage. The product of this stage is a complete set of plans, specifications, and estimates (PS&Es) of required quantities of materials ready for the solicitation of construction bids and subsequent construction. Depending on the scale and complexity of the project, the final design process may take from a few months to several years.

The following paragraphs discuss some important considerations of design, including:

- Developing a concept
- Considering scale and
- Detailing the design.

> Developing a Concept

A design concept gives the project a focus and helps to move it toward a specific direction. There are many elements in a highway, and each involves a number of separate but interrelated design decisions. Integrating all these elements to achieve a common goal or concept helps the designer in making design decisions.

Some of the many elements of highway design are

- a. Number and width of travel lanes, median type and width, and shoulders
- b. Traffic barriers
- c. Overpasses/bridges
- d. Horizontal and vertical alignment and affiliated landscape.

Considering Scale

People driving in a car see the world at a much different scale than people walking on the street. This large discrepancy in the design scale for a car versus the design scale for people has changed the overall planning of our communities. For example, it has become common in many suburban commercial areas that a shopper must get in the car and drive from one store to the next.

The design element with the greatest effect on the scale of the roadway is its width, or cross section. The cross section can include a clear zone, shoulder, parking lanes, travel lanes, and/or median. The wider the overall roadway, the larger its scale; however, there are some design techniques that can help to reduce the perceived width and, thus, the perceived scale of the roadway. Limiting the width of pavement or breaking up the pavement is one option.

In some instances, four lane roadways may look less imposing by designing a grass or planted median in the center.

Detailing the Design

Particularly during the final design phase, it is the details associated with the project that are important. Employing a multidisciplinary design team ensures that important design details are considered and those they are compatible with community values. Often it is the details of the project that are most recognizable to the public. A multidisciplinary design team can produce an aesthetic and functional product when the members work together and are flexible in applying guidelines.

✓ Right-of-way, Construction, and Maintenance

Once the final designs have been prepared and needed right-of-way is purchased, construction bid packages are made available, a contractor is selected, and construction is initiated. During the right-of-way acquisition and construction stages, minor adjustments in the design may be necessary; therefore, there should be continuous involvement of the design team throughout these stages. Construction may be simple or complex and may require a few months to several years. Once construction has been completed, the facility is ready to begin its normal sequence of operations and maintenance.

Even after the completion of construction, the character of a road can be changed by inappropriate maintenance actions. For example, the replacement of sections of guardrail damaged or destroyed in crashes commonly utilizes whatever spare guardrail sections may be available to the local highway maintenance personnel at the time.

***** Stages of Highway Development

Summaries of the five basic stages in highway planning and development.

Stages	Description of Activity
Planning	Identification of transportation needs and program project to be built
	Within financial constraints.
Project Development	The transportation project is more clearly defined. Alternative locations
	and design features are developed and an alternative is selected.
Design	The design team develops detailed design and specification.
Right-of-way	Land needed for the project is acquired.
construction	Selection of contractor, who then builds the project.

Highway Route Surveys and Location

To determine the geometric features of road design, the following surveys must be conducted after the necessity of the road is decided.

A variety of survey and investigations have to be carried out by Road engineers and multidiscipline persons.

A. Transport Planning Surveys

- Traffic Surveys
- Highway inventories
- Pavement Deterioration Study
- Accident study
- B. Alignment and Route location surveys
 - Desk study
 - Reconnaissance
 - Preliminary Survey
 - Final location survey

C. Drainage Studies

- Surface run- off : Hydrologic and hydraulic
- Subsurface drainage: Ground water & Seepage
- Cross-drainage: Location and waterway area required for the cross-drainage structures.

D. Soil Survey

- ➢ Desk study
- Site Reconnaissance

E. Pavement Design investigation Soil property and strength, Material Survey

Location and function: The classification based on location and function should be a more acceptable classification since they may be defined clearly.

Highway alignment:

Once the necessity of the highway is assessed, the next process is deciding the alignment. The highway alignment can be either horizontal or vertical and they are described in detail in the following sections.

Alignment:

The position or the layout of the central line of the highway on the ground is called the alignment. Horizontal alignment includes straight and curved paths. Vertical alignment includes level and gradients. Alignment decision is important because a bad alignment will enhance the construction, maintenance and vehicle operating cost. Once an alignment is xed and constructed, it is not easy to change it due to increase in cost of adjoining land and construction of costly structures by the roadside.

Requirements:

The requirements of an ideal alignment are:

- The alignment between two terminal stations should be short and as far as possible be straight, but due to some practical considerations deviations may be needed.
- The alignment should be easy to construct and maintain. It should be easy for the operation of vehicles. So to the maximum extend easy gradients and curves should be provided.
- It should be safe both from the construction and operating point of view especially at slopes, embankments, and cutting. It should have safe geometric features.
- The alignment should be economical and it can be considered so only when the initial cost, maintenance cost, and operating cost is minimum.

Factors controlling alignment:

We have seen the requirements of an alignment. But it is not always possible to satisfy all these requirements. Hence we have to make a judicial choice considering all the factors. The various factors that control the alignment are as follows:

- Obligatory points: These are the control points governing the highway alignment. These points are classified into two categories. Points through which it should pass and points through which it should not pass. Some of the examples are:
- Bridge site: The bridge can be located only where the river has straight and permanent path and also where the abutment and pier can be strongly founded. The road approach to the bridge should not be curved and skew crossing should be avoided as possible. Thus to locate a bridge the highway alignment may be changed.

- Mountain: While the alignment passes through a mountain, the various alternatives are to either construct a tunnel or to go round the hills. The suitability of the alternative depends on factors like topography, site conditions and construction and operation cost.
- ➤ Intermediate town: The alignment may be slightly deviated to connect an intermediate town or village nearby.

These were some of the obligatory points through which the alignment should pass. Coming to the second category that is the points through which the alignment should not pass are:

- Religious places: These have been protected by the law from being acquired for any purpose. Therefore, these points should be avoided while aligning.
- Very costly structures: Acquiring such structures means heavy compensation which would result in an increase in initial cost. So the alignment may be deviated not to pass through that point.
- Lakes/ponds etc: The presence of a lake or pond on the alignment path would also necessitate deviation of the alignment.
- Traffic: The alignment should suit the traffic requirements. Based on the origindestination data of the area, the desire lines should be drawn. The new alignment should be drawn keeping in view the desire lines, traffic flow pattern etc.
- Geometric design: Geometric design factors such as gradient, radius of curve, sight distance etc. also governs the alignment of the highway. To keep the radius of curve minimum, it may be required to change the alignment of the highway. The alignments should be finalized such that the obstructions to visibility do not restrict the minimum requirements of sight distance. The design standards vary with the class of road and the terrain and accordingly the highway should be aligned.