
VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page1 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

UNIT-I Introduction: Introducing Object Oriented Approach, Procedural Programming

Language Vs Object Oriented Language. Basic concept of OOPs, operators, tokens, variables,

Keywords, Data types, identifiers, characters, typedef statement, constants, Enumerated data

type.

Outcome of this unit ->: students should have a clear understanding of the fundamental

concepts of object-oriented programming, the difference between procedural and object-

oriented approaches, various programming elements like keywords, data types, variables,

identifiers, and basic operators. They should also grasp the importance and usage of

typedef, constants, and enumerated data types in programming.

C++ history

C++ programming language was developed in 1980 by Bjarne Stroustrup at bell

laboratories of AT&T (American Telephone & Telegraph), located in U.S.A.

Bjarne Stroustrup is known as the founder of C++ language.

s

It was develop for adding a feature of OOP (Object Oriented Programming) in C

without significantly changing the C component.

C++ programming is "relative" (called a superset) of C, it means any valid C program

is also a valid C++ program.

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page2 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

Language Year Developed By

Algol 1960 International Group

BCPL 1967 Martin Richard

B 1970 Ken Thompson

Traditional C 1972 Dennis Ritchie

K & R C 1978 Kernighan & Dennis Ritchie

C++ 1980 Bjarne Stroustrup

What is C++?

C++ is a special-purpose programming language developed by Bjarne Stroustrup at

Bell Labs circa 1980. C++ language is very similar to C language, and it is so compatible

with C that it can run 99% of C programs without changing any source of code though

C++ is an object-oriented programming language, so it is safer and well-structured

programming language than C.

Let's summarize the above differences in a tabular form.

No. C C++

1) C follows the procedural style

programming.

C++ is multi-paradigm. It supports

both procedural and object oriented.

2) Data is less secured in C. In C++, you can use modifiers for class

members to make it inaccessible for

outside users.

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page3 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

3) C follows the top-down approach. C++ follows the bottom-up approach.

4) C does not support function

overloading.

C++ supports function overloading.

5) In C, you can't use functions in

structure.

In C++, you can use functions in structure.

6) C does not support reference

variables.

C++ supports reference variables.

7) In C, scanf() and printf() are mainly

used for input/output.

C++ mainly uses stream cin and cout to

perform input and output operations.

8) Operator overloading is not possible

in C.

Operator overloading is possible in C++.

9) C programs are divided

into procedures and modules

C++ programs are divided into functions

and classes.

10) C does not provide the feature of

namespace.

C++ supports the feature of namespace.

11) Exception handling is not easy in C. It

has to perform using other functions.

C++ provides exception handling using

Try and Catch block.

12) C does not support the inheritance. C++ supports inheritance.

C++ Features

It provides a lot of features that are given below.

1. Simple

2. Abstract Data types

3. Machine Independent or Portable

4. Mid-level programming language

5. Structured programming language

6. Rich Library

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page4 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

7. Memory Management

8. Quicker Compilation

9. Pointers

10. Recursion

11. Extensible

12. Object-Oriented

13. Compiler based

14. Reusability

15. National Standards

16. Errors are easily detected

17. Power and Flexibility

18. Strongly typed language

19. Redefine Existing Operators

20. Modeling Real-World Problems

21. Clarity

1) Simple

C++ is a simple language because it provides a structured approach (to break the

problem into parts), a rich set of library functions, data types, etc.

2) Abstract Data types

In C++, complex data types called Abstract Data Types (ADT) can be created using

classes.

3) Portable

C++ is a portable language and programs made in it can be run on different machines.

4) Mid-level / Intermediate programming language

C++ includes both low-level programming and high-level language so it is known as

a mid-level and intermediate programming language. It is used to develop system

applications such as kernel, driver, etc.

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page5 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

5) Structured programming language

C++ is a structured programming language. In this we can divide the program into

several parts using functions.

6) Rich Library

C++ provides a lot of inbuilt functions that make the development fast. Following are

the libraries used in C++ programming are:

o <iostream>

o <cmath>

o <cstdlib>

o <fstream>

7) Memory Management

C++ provides very efficient management techniques. The various memory

management operators help save the memory and improve the program's efficiency.

These operators allocate and deallocate memory at run time. Some common memory

management operators available C++ are new, delete etc.

8) Quicker Compilation

C++ programs tend to be compact and run quickly. Hence the compilation and

execution time of the C++ language is fast.

9) Pointer

C++ provides the feature of pointers. We can use pointers for memory, structures,

functions, array, etc. We can directly interact with the memory by using the pointers.

10) Recursion

In C++, we can call the function within the function. It provides code reusability for

every function.

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page6 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

11) Extensible

C++ programs can easily be extended as it is very easy to add new features into the

existing program.

12) Object-Oriented

In C++, object-oriented concepts like data hiding, encapsulation, and data abstraction

can easily be implemented using keyword class, private, public, and protected access

specifiers. Object-oriented makes development and maintenance easier.

13) Compiler based

C++ is a compiler-based programming language, which means no C++ program can

be executed without compilation. C++ compiler is easily available, and it requires very

little space for storage. First, we need to compile our program using a compiler, and

then we can execute our program.

14) Reusability

With the use of inheritance of functions programs written in C++ can be reused in any

other program of C++. You can save program parts into library files and invoke them

in your next programming projects simply by including the library files. New programs

can be developed in lesser time as the existing code can be reused. It is also possible

to define several functions with same name that perform different task. For Example:

abs () is used to calculate the absolute value of integer, float and long integer.

15) National Standards

C++ has national standards such as ANSI.

16) Errors are easily detected

It is easier to maintain a C++ programs as errors can be easily located and rectified. It

also provides a feature called exception handling to support error handling in your

program.

17) Power and Flexibility

C++ is a powerful and flexible language because of most of the powerful flexible and

modern UNIX operating system is written in C++. Many compilers and interpreters for

other languages such as FORTRAN, PERL, Python, PASCAL, BASIC, LISP, etc., have been

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page7 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

written in C++. C++ programs have been used for solving physics and engineering

problems and even for animated special effects for movies.

18) Strongly typed language

The list of arguments of every function call is typed checked during compilation. If

there is a type mismatch between actual and formal arguments, implicit conversion is

applied if possible. A compile-time occurs if an implicit conversion is not possible or if

the number of arguments is incorrect.

19) Redefine Existing Operators

C++ allows the programmer to redefine the meaning of existing operators such as +,

-. For Example, The "+" operator can be used for adding two numbers and

concatenating two strings.

20) Modelling real-world problems

The programs written in C++ are well suited for real-world modeling problems as close

as possible to the user perspective.

Difference between procedural programming
and object-oriented programming

S.no. On the

basis of

Procedural Programming Object-oriented

programming

1. Definition It is a programming language that is

derived from structure

programming and based upon the

concept of calling procedures. It

follows a step-by-step approach in

order to break down a task into a set

of variables and routines via a

sequence of instructions.

Object-oriented

programming is a

computer programming

design philosophy or

methodology that

organizes/ models

software design around

data or objects rather than

functions and logic.

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page8 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

2. Security It is less secure than OOPs. Data hiding is possible in

object-oriented

programming due to

abstraction. So, it is more

secure than procedural

programming.

3. Approach It follows a top-down approach. It follows a bottom-up

approach.

4. Data

movement

In procedural programming, data

moves freely within the system from

one function to another.

In OOP, objects can move

and communicate with

each other via member

functions.

5. Orientation It is structure/procedure-oriented. It is object-oriented.

6. Access

modifiers

There are no access modifiers in

procedural programming.

The access modifiers in

OOP are named as private,

public, and protected.

7. Inheritance Procedural programming does not

have the concept of inheritance.

There is a feature of

inheritance in object-

oriented programming.

8. Code

reusability

There is no code reusability present

in procedural programming.

It offers code reusability by

using the feature of

inheritance.

9. Overloading Overloading is not possible in

procedural programming.

In OOP, there is a concept

of function overloading

and operator overloading.

10. Importance It gives importance to functions over

data.

It gives importance to data

over functions.

11. Virtual class In procedural programming, there

are no virtual classes.

In OOP, there is an

appearance of virtual

classes in inheritance.

12. Complex

problems

It is not appropriate for complex

problems.

It is appropriate for

complex problems.

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page9 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

13. Data hiding There is not any proper way for data

hiding.

There is a possibility of

data hiding.

14. Program

division

In Procedural programming, a

program is divided into small

programs that are referred to as

functions.

In OOP, a program is

divided into small parts

that are referred to as

objects.

15. Examples Examples of Procedural

programming include C, Fortran,

Pascal, and VB.

The examples of object-

oriented programming are

-

.NET, C#, Python, Java,

VB.NET, and C++.

C++ Operators

An operator is simply a symbol that is used to perform operations. There can be many

types of operations like arithmetic, logical, bitwise etc.

There are following types of operators to perform different types of operations in C

language.

o Arithmetic Operators

o Relational Operators

o Logical Operators

o Bitwise Operators

o Assignment Operator

o Unary operator

o Ternary or Conditional Operator

o Misc Operator

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page10 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

Precedence of Operators in C++

The precedence of operator species that which operator will be evaluated first and

next. The associativity specifies the operators direction to be evaluated, it may be left

to right or right to left.

Let's understand the precedence by the example given below:

1. int data=5+10*10;

The "data" variable will contain 105 because * (multiplicative operator) is evaluated

before + (additive operator).

The precedence and associativity of C++ operators is given below:

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page11 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

Multiplicative * / % Left to right

Additive + - Right to left

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == !=/td> Right to left

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Right to left

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

C++ Program

Before starting the abcd of C++ language, you need to learn how to write, compile

and run the first C++ program.

To write the first C++ program, open the C++ console and write the following code:

1. #include <iostream.h>

2. #include<conio.h>

3. void main() {

4. clrscr();

5. cout << "Welcome to C++ Programming.";

6. getch();

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page12 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

7. }

#include<iostream.h> includes the standard input output library functions. It

provides cin and cout methods for reading from input and writing to output

respectively.

#include <conio.h> includes the console input output library functions. The getch()

function is defined in conio.h file.

void main() The main() function is the entry point of every program in C++

language. The void keyword specifies that it returns no value.

cout << "Welcome to C++ Programming." is used to print the data "Welcome to

C++ Programming." on the console.

getch() The getch() function asks for a single character. Until you press any key, it

blocks the screen.

How to compile and run the C++ program

There are 2 ways to compile and run the C++ program, by menu and by shortcut.

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page13 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

By menu

Now click on the compile menu then compile sub menu to compile the c++

program.

Then click on the run menu then run sub menu to run the c++ program.

By shortcut

Or, press ctrl+f9 keys compile and run the program directly.

You will see the following output on user screen.

You can view the user screen any time by pressing the alt+f5 keys.

C++ Basic Input/Output

C++ I/O operation is using the stream concept. Stream is the sequence of bytes or

flow of data. It makes the performance fast.

If bytes flow from main memory to device like printer, display screen, or a network

connection, etc, this is called as output operation.

If bytes flow from device like printer, display screen, or a network connection, etc to

main memory, this is called as input operation.

I/O Library Header Files

Let us see the common header files used in C++ programming are:

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page14 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

Header

File

Function and Description

<iostream> It is used to define the cout, cin and cerr objects, which correspond to standard output

stream, standard input stream and standard error stream, respectively.

<iomanip> It is used to declare services useful for performing formatted I/O, such as setprecision

and setw.

<fstream> It is used to declare services for user-controlled file processing.

Standard output stream (cout)

The cout is a predefined object of ostream class. It is connected with the standard

output device, which is usually a display screen. The cout is used in conjunction with

stream insertion operator (<<) to display the output on a console

Let's see the simple example of standard output stream (cout):

1. #include <iostream>

2. using namespace std;

3. int main() {

4. char ary[] = "Welcome to C++ tutorial";

5. cout << "Value of ary is: " << ary << endl;

6. }

Output:

Value of ary is: Welcome to C++ tutorial

Standard input stream (cin)

The cin is a predefined object of istream class. It is connected with the standard input

device, which is usually a keyboard. The cin is used in conjunction with stream

extraction operator (>>) to read the input from a console.

Let's see the simple example of standard input stream (cin):

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page15 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

1. #include <iostream>

2. using namespace std;

3. int main() {

4. int age;

5. cout << "Enter your age: ";

6. cin >> age;

7. cout << "Your age is: " << age << endl;

8. }

Output:

Enter your age: 22

Your age is: 22

Standard end line (endl)

The endl is a predefined object of ostream class. It is used to insert a new line

characters and flushes the stream.

Let's see the simple example of standard end line (endl):

1. ss#include <iostream>

2. using namespace std;

3. int main() {

4. cout << "C++ Tutorial";

5. cout << " Javatpoint"<<endl;

6. cout << "End of line"<<endl;

7. }

Output:

C++ Tutorial Javatpoint

End of line

C++ Variable

A variable is a name of memory location. It is used to store data. Its value can be

changed and it can be reused many times.

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page16 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

It is a way to represent memory location through symbol so that it can be easily

identified.

Let's see the syntax to declare a variable:

1. type variable_list;

The example of declaring variable is given below:

1. int x;

2. float y;

3. char z;

Here, x, y, z are variables and int, float, char are data types.

We can also provide values while declaring the variables as given below:

1. int x=5,b=10; //declaring 2 variable of integer type

2. float f=30.8;

3. char c='A';

Rules for defining variables

A variable can have alphabets, digits and underscore.

A variable name can start with alphabet and underscore only. It can't start with digit.

No white space is allowed within variable name.

A variable name must not be any reserved word or keyword e.g. char, float etc.

Valid variable names:

1. int a;

2. int _ab;

3. int a30;

Invalid variable names:

1. int 4;

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page17 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

2. int x y;

3. int double;

4.

5. C++ Data Types
6. A data type specifies the type of data that a variable can store such as integer,

floating, character etc.

7.
8. There are 4 types of data types in C++ language.

Types Data Types

Basic Data Type int, char, float, double, etc

Derived Data Type array, pointer, etc

Enumeration Data Type enum

User Defined Data Type structure

9. Basic Data Types
10. The basic data types are integer-based and floating-point based. C++ language

supports both signed and unsigned literals.

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page18 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

11. The memory size of basic data types may change according to 32 or 64 bit

operating system.

12. Let's see the basic data types. It size is given according to 32 bit OS.

Data Types Memory Size Range

Char 1 byte -128 to 127

signed char 1 byte -128 to 127

unsigned char 1 byte 0 to 127

Short 2 byte -32,768 to 32,767

signed short 2 byte -32,768 to 32,767

unsigned short 2 byte 0 to 32,767

Int 2 byte -32,768 to 32,767

signed int 2 byte -32,768 to 32,767

unsigned int 2 byte 0 to 32,767

short int 2 byte -32,768 to 32,767

signed short int 2 byte -32,768 to 32,767

unsigned short int 2 byte 0 to 32,767

long int 4 byte

signed long int 4 byte

unsigned long int 4 byte

Float 4 byte

Double 8 byte

long double 10 byte

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page19 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

13. C++ Keywords
14. A keyword is a reserved word. You cannot use it as a variable name, constant

name etc. A list of 32 Keywords in C++ Language which are also available

in C language are given below.

auto break case char const continue default do

double else enum extern float for goto if

int long register return short signed sizeof static

struct switch typedef union unsigned void volatile while

15. A list of 30 Keywords in C++ Language which are not available in C

language are given below.

Asm dynamic_cast namespace reinterpret_cast bool

Explicit new static_cast false catch

Operator template friend private class

This inline public throw const_cast

Delete mutable protected true try

Typeid typename using virtual wchar_t

C++ Identifiers

C++ identifiers in a program are used to refer to the name of the variables, functions,

arrays, or other user-defined data types created by the programmer. They are the basic

requirement of any language. Every language has its own rules for naming the

identifiers.

In short, we can say that the C++ identifiers represent the essential elements in a

program which are given below:

ADVERTISEMENT

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page20 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

o Constants

o Variables

o Functions

o Labels

o Defined data types

Some naming rules are common in both C and C++. They are as follows:

o Only alphabetic characters, digits, and underscores are allowed.

o The identifier name cannot start with a digit, i.e., the first letter should be alphabetical.

After the first letter, we can use letters, digits, or underscores.

o In C++, uppercase and lowercase letters are distinct. Therefore, we can say that C++

identifiers are case-sensitive.

o A declared keyword cannot be used as a variable name.

For example, suppose we have two identifiers, named as 'FirstName', and 'Firstname'.

Both the identifiers will be different as the letter 'N' in the first case in uppercase while

lowercase in second. Therefore, it proves that identifiers are case-sensitive.

Valid Identifiers

The following are the examples of valid identifiers are:

1. Result

2. Test2

3. _sum

4. power

Invalid Identifiers

The following are the examples of invalid identifiers:

1. Sum-1 // containing special character '-'.

2. 2data // the first letter is a digit.

3. break // use of a keyword.

The major difference between C and C++ is the limit on the length of the name of the

variable. ANSI C considers only the first 32 characters in a name while ANSI C++

imposes no limit on the length of the name.

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page21 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

Constants are the identifiers that refer to the fixed value, which do not change during

the execution of a program. Both C and C++ support various kinds of literal constants,

and they do have any memory location. For example, 123, 12.34, 037, 0X2, etc. are the

literal constants.

Let's look at a simple example to understand the concept of identifiers.

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5. int a;

6. int A;

7. cout<<"Enter the values of 'a' and 'A'";

8. cin>>a;

9. cin>>A;

10. cout<<"\nThe values that you have entered are : "<<a<<" , "<<A;

11. return 0;

12. }

In the above code, we declare two variables 'a' and 'A'. Both the letters are same but

they will behave as different identifiers. As we know that the identifiers are the case-

sensitive so both the identifiers will have different memory locations.

Output

What are the keywords?

Keywords are the reserved words that have a special meaning to the compiler. They

are reserved for a special purpose, which cannot be used as the identifiers. For

example, 'for', 'break', 'while', 'if', 'else', etc. are the predefined words where predefined

words are those words whose meaning is already known by the compiler. Whereas,

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page22 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

the identifiers are the names which are defined by the programmer to the program

elements such as variables, functions, arrays, objects, classes.

Differences between Identifiers and Keywords

The following is the list of differences between identifiers and keywords:

Identifiers Keywords

Identifiers are the names defined by the

programmer to the basic elements of a program.

Keywords are the reserved words whose

meaning is known by the compiler.

It is used to identify the name of the variable. It is used to specify the type of entity.

It can consist of letters, digits, and underscore. It contains only letters.

It can use both lowercase and uppercase letters. It uses only lowercase letters.

No special character can be used except the

underscore.

It cannot contain any special character.

The starting letter of identifiers can be lowercase,

uppercase or underscore.

It can be started only with the lowercase

letter.

It can be classified as internal and external

identifiers.

It cannot be further classified.

Examples are test, result, sum, power, etc. Examples are 'for', 'if', 'else', 'break', etc.

C++ Expression

C++ expression consists of operators, constants, and variables which are arranged

according to the rules of the language. It can also contain function calls which return

values. An expression can consist of one or more operands, zero or more operators to

compute a value. Every expression produces some value which is assigned to the

variable with the help of an assignment operator.

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page23 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

Examples of C++ expression:

1. (a+b) - c

2. (x/y) -z

3. 4a2 - 5b +c

4. (a+b) * (x+y)

An expression can be of following types:

o Constant expressions

o Integral expressions

o Float expressions

o Pointer expressions

o Relational expressions

o Logical expressions

o Bitwise expressions

o Special assignment expressions

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page24 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

If the expression is a combination of the above expressions, such expressions are

known as compound expressions.

Constant expressions

A constant expression is an expression that consists of only constant values. It is an

expression whose value is determined at the compile-time but evaluated at the run-

time. It can be composed of integer, character, floating-point, and enumeration

constants.

Constants are used in the following situations:

o It is used in the subscript declarator to describe the array bound.

o It is used after the case keyword in the switch statement.

o It is used as a numeric value in an enum

o It specifies a bit-field width.

o It is used in the pre-processor #if

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page25 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

In the above scenarios, the constant expression can have integer, character, and

enumeration constants. We can use the static and extern keyword with the constants

to define the function-scope.

The following table shows the expression containing constant value:

Expression containing constant Constant value

x = (2/3) * 4 (2/3) * 4

extern int y = 67 67

int z = 43 43

static int a = 56 56

Let's see a simple program containing constant expression:

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5. int x; // variable declaration.

6. x=(3/2) + 2; // constant expression

7. cout<<"Value of x is : "<<x; // displaying the value of x.

8. return 0;

9. }

In the above code, we have first declared the 'x' variable of integer type. After

declaration, we assign the simple constant expression to the 'x' variable.

Output

Value of x is : 3

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page26 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

Integral Expressions

An integer expression is an expression that produces the integer value as output after

performing all the explicit and implicit conversions.

Following are the examples of integral expression:

1. (x * y) -5

2. x + int(9.0)

3. where x and y are the integers.

Let's see a simple example of integral expression:

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5. int x; // variable declaration.

6. int y; // variable declaration

7. int z; // variable declaration

8. cout<<"Enter the values of x and y";

9. cin>>x>>y;

10. z=x+y;

11. cout<<"\n"<<"Value of z is :"<<z; // displaying the value of z.

12. return 0;

13. }

In the above code, we have declared three variables, i.e., x, y, and z. After declaration,

we take the user input for the values of 'x' and 'y'. Then, we add the values of 'x' and

'y' and stores their result in 'z' variable.

Output

Enter the values of x and y

8

9

Value of z is :17

Let's see another example of integral expression.

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page27 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5. int x; // variable declaration

6. int y=9; // variable initialization

7. x=y+int(10.0); // integral expression

8. cout<<"Value of x : "<<x; // displaying the value of x.

9. return 0;

10. }

In the above code, we declare two variables, i.e., x and y. We store the value of

expression (y+int(10.0)) in a 'x' variable.

Output

Value of x : 19

Float Expressions

A float expression is an expression that produces floating-point value as output after

performing all the explicit and implicit conversions.

The following are the examples of float expressions:

1. x+y

2. (x/10) + y

3. 34.5

4. x+float(10)

Let's understand through an example.

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5.

6. float x=8.9; // variable initialization

7. float y=5.6; // variable initialization

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page28 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

8. float z; // variable declaration

9. z=x+y;

10. std::cout <<"value of z is :" << z<<std::endl; // displaying the value of z.

11.

12.

13. return 0;

14. }

Output

value of z is :14.5

Let's see another example of float expression.

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5. float x=6.7; // variable initialization

6. float y; // variable declaration

7. y=x+float(10); // float expression

8. std::cout <<"value of y is :" << y<<std::endl; // displaying the value of y

9. return 0;

10. }

In the above code, we have declared two variables, i.e., x and y. After declaration, we

store the value of expression (x+float(10)) in variable 'y'.

Output

value of y is :16.7

Pointer Expressions

A pointer expression is an expression that produces address value as an output.

The following are the examples of pointer expression:

1. &x

2. ptr

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page29 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

3. ptr++

4. ptr-

Let's understand through an example.

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5.

6. int a[]={1,2,3,4,5}; // array initialization

7. int *ptr; // pointer declaration

8. ptr=a; // assigning base address of array to the pointer ptr

9. ptr=ptr+1; // incrementing the value of pointer

10. std::cout <<"value of second element of an array : " << *ptr<<std::endl;

11. return 0;

12. }

In the above code, we declare the array and a pointer ptr. We assign the base address

to the variable 'ptr'. After assigning the address, we increment the value of pointer

'ptr'. When pointer is incremented then 'ptr' will be pointing to the second element of

the array.

Output

value of second element of an array : 2

Relational Expressions

A relational expression is an expression that produces a value of type bool, which can

be either true or false. It is also known as a boolean expression. When arithmetic

expressions are used on both sides of the relational operator, arithmetic expressions

are evaluated first, and then their results are compared.

The following are the examples of the relational expression:

1. a>b

2. a-b >= x-y

3. a+b>80

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page30 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

Let's understand through an example

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5. int a=45; // variable declaration

6. int b=78; // variable declaration

7. bool y= a>b; // relational expression

8. cout<<"Value of y is :"<<y; // displaying the value of y.

9. return 0;

10. }

In the above code, we have declared two variables, i.e., 'a' and 'b'. After declaration, we

have applied the relational operator between the variables to check whether 'a' is

greater than 'b' or not.

Output

Value of y is :0

Let's see another example.

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5. int a=4; // variable declaration

6. int b=5; // variable declaration

7. int x=3; // variable declaration

8. int y=6; // variable declaration

9. cout<<((a+b)>=(x+y)); // relational expression

10. return 0;

11. }

In the above code, we have declared four variables, i.e., 'a', 'b', 'x' and 'y'. Then, we

apply the relational operator (>=) between these variables.

Output

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page31 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

1

Logical Expressions

A logical expression is an expression that combines two or more relational expressions

and produces a bool type value. The logical operators are '&&' and '||' that combines

two or more relational expressions.

The following are some examples of logical expressions:

1. a>b && x>y

2. a>10 || b==5

Let's see a simple example of logical expression.

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5. int a=2;

6. int b=7;

7. int c=4;

8. cout<<((a>b)||(a>c));

9. return 0;

10. }

Output

0

Bitwise Expressions

A bitwise expression is an expression which is used to manipulate the data at a bit

level. They are basically used to shift the bits.

For example:

x=3

x>>3 // This statement means that we are shifting the three-bit position to the right.

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page32 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

In the above example, the value of 'x' is 3 and its binary value is 0011. We are shifting

the value of 'x' by three-bit position to the right. Let's understand through the

diagrammatic representation.

Let's see a simple example.

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5. int x=5; // variable declaration

6. std::cout << (x>>1) << std::endl;

7. return 0;

8. }

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page33 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

In the above code, we have declared a variable 'x'. After declaration, we applied the

bitwise operator, i.e., right shift operator to shift one-bit position to right.

Output

2

Let's look at another example.

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5. int x=7; // variable declaration

6. std::cout << (x<<3) << std::endl;

7. return 0;

8. }

In the above code, we have declared a variable 'x'. After declaration, we applied the

left shift operator to variable 'x' to shift the three-bit position to the left.

Output

56

Special Assignment Expressions

Special assignment expressions are the expressions which can be further classified

depending upon the value assigned to the variable.

o Chained Assignment

Chained assignment expression is an expression in which the same value is assigned

to more than one variable by using single statement.

For example:

1. a=b=20

2. or

3. (a=b) = 20

Let's understand through an example.

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page34 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

1. #include <iostream>

2. using namespace std;

3. int main()

4.

5. int a; // variable declaration

6. int b; // variable declaration

7. a=b=80; // chained assignment

8. std::cout <<"Values of 'a' and 'b' are : " <<a<<","<<b<< std::endl;

9. return 0;

10. }

In the above code, we have declared two variables, i.e., 'a' and 'b'. Then, we have

assigned the same value to both the variables using chained assignment expression.

Output

Values of 'a' and 'b' are : 80,80

Note: Using chained assignment expression, the value cannot be assigned to the

variable at the time of declaration. For example, int a=b=c=90 is an invalid

statement.

o Embedded Assignment Expression

An embedded assignment expression is an assignment expression in which

assignment expression is enclosed within another assignment expression.

Let's understand through an example.

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5. int a; // variable declaration

6. int b; // variable declaration

7. a=10+(b=90); // embedded assignment expression

8. std::cout <<"Values of 'a' is " <<a<< std::endl;

9. return 0;

10. }

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page35 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

In the above code, we have declared two variables, i.e., 'a' and 'b'. Then, we applied

embedded assignment expression (a=10+(b=90)).

Output

Values of 'a' is 100

o Compound Assignment

A compound assignment expression is an expression which is a combination of an

assignment operator and binary operator.

For example,

1. a+=10;

In the above statement, 'a' is a variable and '+=' is a compound statement.

Let's understand through an example.

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5. int a=10; // variable declaration

6. a+=10; // compound assignment

7. std::cout << "Value of a is :" <<a<< std::endl; // displaying the value of a.

8. return 0;

9. }

In the above code, we have declared a variable 'a' and assigns 10 value to this variable.

Then, we applied compound assignment operator (+=) to 'a' variable, i.e., a+=10 which

is equal to (a=a+10). This statement increments the value of 'a' by 10.

Output

Value of a is :20

C++ 'Using' vs 'Typedef'

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page36 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

C++ has two keywords that can be used to define new types: typedef and using. Both

of these keywords allow you to create a new type name that can be used to declare

variables, but they work in slightly different ways.

typedef is an older keyword that has been part of the C++ language since the

beginning. It is used to create a new type name that is an alias for an existing type. For

example, you could use typedef to create a new type named MyInt that is an alias for

the built-in int type:

Syntax

1. typedef int MyInt;

After this definition, you can use MyInt to declare variables just like you would use int:

Snippet

1. MyInt x = 5;

Using is a newer keyword that was introduced in C++11. It works in a similar way to

typedef, but it has a more flexible syntax and can be used in more places in your code.

For example, you can use using to define a new type name in the same way as typedef:

Snippet

1. using MyInt = int;

This creates a new type named MyInt, which is an alias for the built-in int type. You can

then use MyInt to declare variables just like you would use int.

In general, using is considered to be a more modern and flexible way to define new

type names in C++. typedef is still supported for backward compatibility, but the

newest code should use using instead.

Here is an example of using the using keyword to define a new type named MyInt that

is an alias for the built-in int type:

C++ code (Example-1)

1. #include <iostream>

2.

3. // Define a new type named MyInt that is an alias for int

4. using MyInt = int;

5. // The main driver code functionality ends from here

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page37 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

6. int main()

7. {

8. // Declare a variable of type MyInt

9. MyInt x = 5;

10.

11. // Print the value of the variable

12. std::cout << "x = " << x << std::endl;

13.

14. return 0;

15. // The main driver code functionality ends from here

16. }

This code will print the following output:

x = 5

Note that using is not limited to defining type aliases for built-in types like int. You can

use it to define type aliases for any type, including user-defined types, template types,

and more.

C++ code (Example-2)

1. #include <iostream>

2. #include <vector>

3.

4. using namespace std;

5.

6. int main()

7. {

8. // Create a vector of integers with an initial capacity of 5 elements

9. vector<int> numbers(5);

10.

11. // Add some elements to the vector

12. numbers.push_back(10);

13. numbers.push_back(20);

14. numbers.push_back(30);

15. numbers.push_back(40);

16. numbers.push_back(50);

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page38 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

17.

18. // Print the size and capacity of the vector

19. cout << "Size: " << numbers.size() << endl;

20. cout << "Capacity: " << numbers.capacity() << endl;

21.

22. // Remove the last element from the vector

23. numbers.pop_back();

24.

25. // Print the size and capacity of the vector after removing an element

26. cout << "Size: " << numbers.size() << endl;

27. cout << "Capacity: " << numbers.capacity() << endl;

28.

29. // Clear all elements from the vector

30. numbers.clear();

31.

32. // Print the size and capacity of the vector after clearing

33. cout << "Size: " << numbers.size() << endl;

34. cout << "Capacity: " << numbers.capacity() << endl;

35.

36. return 0;

37. }

Output:

Size: 10

Capacity: 10

Size: 9

Capacity: 10

Size: 0

Capacity: 10

C++ code (typedef example)

1. #include <iostream>

2. #include <vector>

3. using namespace std;

4.

5. // Create an alias for a vector of integers

6. typedef vector<int> IntVector;

7.

VISION INSTITUTE OF TECHNOLOGY, Subject-: Object Oriented
Programming Using C++

ALIGARH

Unit 2: Introduction Of C++

Page39 Faculty: SHAHRUKH KAMAL
Shahrukhkamal7@gmail.com

8. int main()

9. {

10. // Create a vector of integers using the alias

11. IntVector numbers;

12.

13. // Add some elements to the vector

14. numbers.push_back(10);

15. numbers.push_back(20);

16. numbers.push_back(30);

17.

18. // Print the elements of the vector

19. for (IntVector::iterator it = numbers.begin(); it != numbers.end(); ++it)

20. {

21. cout << *it << " ";

22. }

23.

24. return 0;

25. }

Output:

10 20 30

In this code, we use the 'typedef' keyword to create an alias called 'IntVector' for a

'vector' of integers. We then use this alias to create a 'vector' object and add some

elements to it.

