

Unit III : TRIGONOMETRY

Sine Rule, Sine Law or Sine Formula:-

In general, the law of sines is defined as the ratio of side length to the sine of the opposite angle. It holds for all the three sides of a triangle respective of their sides and angles.

a/sinA = b/sinB = c/sinC.

Cosine rule or law of cosines or Cosine Formula:-

The cosine rule relates to the lengths of the sides of a triangle with any of its angles being a cosine angle. With the help of this rule, we can calculate the length of the side of a triangle or can find the measure of the angle between the sides.

 $\cos x = (b^2 + c^2 - a^2)/2bc$

- $\cos y = (a^2 + c^2 b^2)/2ac$ •
- $\cos z = (a^2 + b^2 c^2)/2ab$

Projection formula:-

projection formulae to find out the sides and angles of the triangle ABC can be shown as follows:

 $a = b \cos C + c \cos B$ $b = c \cos A + a \cos C$

 $c = a \cos B + b \cos A$.

Tangent Formula)

$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}; \tan \frac{C-A}{2} = \frac{c-a}{c+a} \cot \frac{B}{2}; \tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}$$

$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}; \sin \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{ac}}; \sin \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}$$

$$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}; \cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ac}}; \cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}$$

$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}} = \frac{(s-b)(s-c)}{\Delta}; \tan \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}} = \frac{(s-c)(s-a)}{\Delta}$$

$$\tan \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} = \frac{(s-a)(s-b)}{\Delta}$$
Area of triangle $\Delta = \sqrt{s(s-a)(s-b)} = \frac{(s-a)(s-b)}{\Delta}$
Area of triangle $\Delta = \sqrt{s(s-a)(s-b)(s-c)} = \frac{2\Delta}{bc}$ or $\Delta = \frac{1}{2}bc \sin A$

$$\sin B = \frac{2}{ac}\sqrt{s(s-a)(s-b)(s-c)} = \frac{2\Delta}{ab}$$
 or $\Delta = \frac{1}{2}ac \sin B$

$$\sin C = \frac{2}{ab}\sqrt{s(s-a)(s-b)(s-c)} = \frac{2\Delta}{ab}$$
 or $\Delta = \frac{1}{2}ab \sin C$
where $2s = a + b + c$ = perimeter , Δ = area of a triangle.

Unit III : TRIGONOMETRY

Example:

In any $\triangle ABC$, $\angle A = 30^\circ$, $\angle C = 45^\circ$, find a : c. In A ABC from sine rule $\frac{a}{\sin A} = \frac{c}{\sin C} \implies \frac{a}{\sin 30^{\circ}} = \frac{c}{\sin 45^{\circ}}$ $\frac{a}{\sin 30^{\circ}} = \frac{1}{2} = \frac{1}{2} \times \frac{\sqrt{2}}{1} = \frac{1}{\sqrt{2}}$ $a:c=1:\sqrt{2}$

EXAMPLE:-

Prove $\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{a^2 + b^2 + c^2}{2abc}$

Solution : L.H.S. =
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{1}{a} \cos A + \frac{1}{b} \cos B + \frac{1}{c} \cos C$$

$$= \frac{1}{a} \frac{b^2 + c^2 - a^2}{2bc} + \frac{1}{b} \frac{c^2 + a^2 - b^2}{2ac} + \frac{1}{c} \frac{a^2 + b^2 - c^2}{2ab}$$
[putting the values of $\cos A$, $\cos B$ and $\cos C$]

$$= \frac{1}{2abc} [b^2 + c^2 - a^2 + c^2 + a^2 - b^2 + a^2 + b^2 - c^2]$$

$$= \frac{1}{2abc} [a^2 + b^2 + c^2] = \frac{a^2 + b^2 + c^2}{2abc} = \text{R.H.S.}$$
Proved.

Unit III : TRIGONOMETRY

Example:-

Prove $a \sin (B - C) + b \sin (C - A) + c \sin (A - B) = 0$ **Solution :** L.H.S. = $a \sin (B - C) + b \sin (C - A) + c \sin (A - B)$ $= K \sin A \sin (B - C) + K \sin B \sin (C - A) + K \sin C \sin (A - B)$ $\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = K$ $= K \cdot [\sin A \sin (B - C) + \sin B \sin (C - A) + \sin C \sin (A - B)]$ $= K [\sin \{\pi - (B + C)\} \sin (B - C) + \sin \{\pi - (C + A)\} \sin (C - A)$ $+ \sin \{\pi - (A + B)\} \sin (A - B)\}$ $[:: A + B + C = \pi]$ $= K [\sin (B + C) \sin (B - C) + \sin (C + A) \sin (C - A) + \sin (A + B) \sin (A - B)]$ $[\because \sin(\pi - \theta) = \theta]$ $= K [\sin^2 B - \sin^2 C + \sin^2 C - \sin^2 A + \sin^2 A - \sin^2 B]$ $[\because \sin (\alpha + \beta) \sin (\alpha - \beta) = \sin^2 \alpha - \sin^2 \beta]$ **Proved**. $= K \times 0 = 0 = \text{ R.H.S.}$

EXAMPLE :-If $\sin 2A + \sin 2B = \sin 2C$ for any $\triangle ABC$, prove $A = 90^{\circ}$ or $B = 90^{\circ}$

Solution : Given $\sin 2A + \sin 2B = \sin 2C$ $2\sin\frac{2A+2B}{2}$. $\cos\frac{2A-2B}{2} = 2\sin C \cos C$ or $\sin (A + B) \cdot \cos (A - B) = \sin C \cos C$ or $\sin (\pi - C) \cdot \cos (A - B) = \sin C \cos \{\pi - (A + B)\}$ $[:: A + B + C = \pi]$ or $\sin C \cos (A - B) = -\sin C \cos (A + B)$ or $\sin C \left[\cos \left(A - B \right) + \cos \left(A + B \right) \right] = 0$ or $\sin C \left[2 \cos A \cdot \cos B \right] = 0$ or $\sin C = 0$ or $2\cos A \cdot \cos B = 0$... But $\sin C = 0 \Rightarrow C = 0$, which is not possible for a Δ . $2\cos A \cdot \cos B = 0$ $\cos A \cdot \cos B = 0$ or ... $\cos A = 0$ or $\cos B = 0$ ·. and $\cos B = 0 \implies B = \frac{\pi}{2} = 90^{\circ}$ [:: $\cos 90^{\circ} = 0$] But $\cos A = 0 \Rightarrow A = \frac{\pi}{2} = 90^{\circ}$ $A = 90^{\circ}$ or $B = 90^{\circ}$ Proved

EXAMPLE:-

If the sides of a triangle ABC are in H.P. prove $\csc^2 \frac{A}{2}$, $\csc^2 \frac{B}{2}$, $\csc^2 \frac{C}{2}$ are in A.P.

Unit III : TRIGONOMETRY

Solution : Let the sides of
$$\Delta$$
 be a, b, c . Now a, b, c are in H.P. [given]

$$\therefore \qquad \frac{1}{a}, \frac{1}{b} \text{ and } \frac{1}{c} \text{ will be in A.P.}$$

$$\Rightarrow \qquad \frac{s}{a}, \frac{s}{b} \text{ and } \frac{s}{c} \text{ will be in A.P.} \Rightarrow \qquad \frac{s}{a} - 1, \frac{s}{b} - 1 \text{ or } \frac{s}{c} - 1 \text{ in A.P.}$$

$$\Rightarrow \qquad \frac{s-a}{a}, \frac{s-b}{b} \text{ and } \frac{s-c}{c} \text{ are also in A.P.}$$

$$\Rightarrow \qquad \frac{s-a}{a} \times \frac{abc}{(s-a)(s-b)(s-c)}, \frac{s-b}{b} \times \frac{abc}{(s-a)(s-b)(s-c)}$$
and
$$\qquad \frac{s-c}{c} \times \frac{abc}{(s-a)(s-b)(s-c)} \text{ will be in A.P.}$$

$$\Rightarrow \qquad \frac{bc}{(s-b)(s-c)}, \frac{ac}{(s-a)(s-c)} \text{ and } \frac{ab}{(s-a)(s-b)} \text{ will be in A.P.}$$

$$\Rightarrow \qquad \cosec^2 \frac{A}{2}, \csc^2 \frac{B}{2} \text{ and } \csc^2 \frac{C}{2} \text{ will be in A.P. [\because \cscec \frac{A}{2} = \sqrt{\frac{bc}{(s-b)(s-c)}} \text{ etc.]}$$

INVERSE CIRCULAR FUNCTION:-

1. If
$$\sin\theta = x$$
 then $\theta = \sin^{-1} x$
2. If $\sin^{-1} x = \theta$ then $\sin\theta = x$
3. $\sin^{-1} x = \csc^{-1} \left(\frac{1}{x}\right)$; $\cos^{-1} x = \sec^{-1} \left(\frac{1}{x}\right)$ etc.
4. $\theta = \sin^{-1} (\sin \theta) = \cos^{-1} (\cos \theta) = \tan^{-1} (\tan \theta) = \cot^{-1} (\cot \theta)$ etc.
5. $x = \sin (\sin^{-1} x) = \cos (\cos^{-1} x) = \tan (\tan^{-1} x) = \cot (\cot^{-1} x)$ etc.
6. $\sin^{-1} (-x) = -\sin^{-1} x$; $\cos^{-1} (-x) = \pi - \cos^{-1} x$
 $\tan^{-1} (-x) = -\tan^{-1} x$; $\cot^{-1} (-x) = \pi - \cot^{-1} x$
 $\csc^{-1} (-x) = -\csc^{-1} x$; $\sec^{-1} (-x) = \pi - \cot^{-1} x$
 $\csc^{-1} (-x) = -\csc^{-1} x$; $\sec^{-1} (-x) = \pi - \sec^{-1} x$
7. $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$, if $xy < 1$
 $= \pi + \tan^{-1} \frac{x+y}{1-xy}$ if $xy > 1$
 $\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy}$, $xy > -1$
 $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1} \frac{x+y+z-xyz}{1-xy-yz-zx}$
8. $\sin^{-1} x \pm \sin^{-1} y = \sin^{-1} [x \sqrt{1-y^2} \pm y \sqrt{1-x^2}]$
 $\cos^{-1} x \pm \cos^{-1} y = \cos^{-1} [xy \mp \sqrt{1-x^2} \sqrt{1-y^2}]$
9. $2\tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2} = \sin^{-1} \frac{2x}{1+x^2} = \cos^{-1} \frac{1-x^2}{1+x^2}$
 $2\sin^{-1} x = \sin^{-1} [2x \sqrt{1-x^2}]$; $2\cos^{-1} x = \cos^{-1} [2x^2 - 1]$
10. $3\tan^{-1} x = \tan^{-1} \frac{3x-x^3}{1-3x^2}$; $3\sin^{-1} x = \sin^{-1} (3x - 4x^3)$; $3\cos^{-1} x = \cos^{-1} (4x^3 - 3x)$
11. $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$; $\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$; $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$

Unit III : TRIGONOMETRY DOMAIN OF INVERSE CIRCULAR FUNCTION:

Table I		
0	Domain	Range
$\sin^{-1}x$	$-1 \le x \le 1$	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$
$\csc^{-1}x$	R - (-1,1)	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, \theta \neq 0$
$\cos^{-1}x$	$-1 \le x \le 1$	$0 \le \theta \le \pi$
$\sec^{-1} x$	R - (-1,1)	$0 \le \theta \le \pi, \ \theta \ne \frac{\pi}{2}$
$\tan^{-1}x$	$-\infty < x < +\infty i.e., R$	$\frac{-\pi}{2} < \theta < \frac{\pi}{2}$
$\cot^{-1}x$	$-\infty < x < +\infty i.e., R$	$0 < \theta < \pi$

Example 1. Give the principal values of the following inverse functions : (i) $\sin^{-1}\left(\frac{1}{2}\right)$ and $\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ (ii) $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ and $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ (iii) $\tan^{-1}\left(-\sqrt{3}\right)$ and $\tan^{-1} 1$ **Solution** : (i) $\sin^{-1}(\sin \theta) = \theta$, where $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ and $-1 \le x \le 1$ $\therefore \sin^{-1}\frac{1}{2}$ is an angle lying in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and whose sine is $\frac{1}{2} \Rightarrow \sin^{-1}\frac{1}{2} = \frac{\pi}{6}$ Similarly $\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right) = an$ angle lying in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and whose sine is $-\frac{1}{\sqrt{2}}$ $\Rightarrow \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4}$ (ii) $\therefore \cos^{-1} x = \theta$, where $0 \le \theta \le \pi$ and $-1 \le x \le 1$ $\therefore \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = an$ angle lying in $[0, \pi]$ whose value of cosine is $\frac{\sqrt{3}}{2}$ $\Rightarrow \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = an$ angle lying in $[0, \pi]$ whose cosine is $-\frac{1}{\sqrt{2}}$ $\Rightarrow \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = an$ angle lying in $[0, \pi]$ whose cosine is $-\frac{1}{\sqrt{2}}$ $\Rightarrow \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4}$ (iii) $\therefore \tan^{-1} x = \theta$, where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ and whose tangent is $-\sqrt{3}$ $\therefore \tan^{-1}(-\sqrt{3}) = an$ angle lying in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ whose tangent is $-\sqrt{3}$

Unit III : TRIGONOMETRY \Rightarrow $\tan^{-1}(-\sqrt{3}) = -\frac{\pi}{2}$ Similarly $\tan^{-1}(1) =$ an angle lying in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ whose tangent is 1 $\therefore \tan^{-1} 1 = \frac{\pi}{2}$ Example 2. Evaluate the following : (i) $\sin^{-1}\left(\sin\frac{\pi}{4}\right)$ (ii) $\cos^{-1}\left(\cos\frac{2\pi}{3}\right)$ (iii) $\tan^{-1}\left(\tan\frac{\pi}{6}\right)$ (iv) $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$ (v) $\cos^{-1}\left(\frac{7\pi}{6}\right)$ **Solution** : (i) $\sin^{-1}(\sin \theta) = \theta$, if $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ $\therefore -\frac{\pi}{2} \le \frac{\pi}{4} \le \frac{\pi}{2}$ Hence $\sin^{-1}\left(\sin\frac{\pi}{4}\right) = \frac{\pi}{4}$ (ii) $\cos^{-1}(\cos\theta) = \theta$ if $0 \le \theta \le \pi$ $\therefore \cos^{-1}\left(\cos\frac{2\pi}{2}\right) = \frac{2\pi}{2}$ $\because 0 \le \frac{2\pi}{3} \le \pi$ (iii) \because $\tan^{-1}(\tan\theta) = \theta$, if $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ \therefore $\tan^{-1}(\tan\frac{\pi}{6}) = \frac{\pi}{6}$ $\left[\because -\frac{\pi}{2} < \frac{\pi}{6} < \frac{\pi}{2} \right]$ (iv) $\therefore \quad \frac{2\pi}{2} \notin -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ $\therefore \quad \sin^{-1} \left(\sin \frac{2\pi}{3} \right) \neq \frac{2\pi}{3}$ Now $\sin^{-1}\left(\sin\frac{2\pi}{2}\right) = \sin^{-1}\left\{\sin\left(\pi - \frac{\pi}{2}\right)\right\}$ $\Rightarrow \sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\left(\sin\frac{\pi}{3}\right)$ $[tr \sin(\pi - \theta) = \sin \theta]$ $\Rightarrow \sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \frac{\pi}{3}$ $\therefore \cos^{-1}\left(\cos\frac{7\pi}{6}\right) \neq \frac{7\pi}{6}$ (v) $\therefore \frac{7\pi}{6} \notin [0, \pi]$ $[\because \cos\left(2\pi - \theta\right) = \cos\theta]$ Now $\cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \cos^{-1}\left\{\cos\left(2\pi - \frac{5\pi}{6}\right)\right\}$ $\Rightarrow \cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \cos^{-1}\left(\cos\frac{5\pi}{6}\right) \Rightarrow \cos^{-1}\cos\frac{7\pi}{6} = \frac{5\pi}{6}$ Ans.

> EXAMPLE: PROVE (i) $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$ [U.P. 2018(58)] (ii) $\tan^{-1} 1 + \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \frac{\pi}{2}$ [U.P. 2011, 18(0)] Solution : (i) L.H.S. $= 2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{2 \times \frac{1}{3}}{1 - (\frac{1}{3})^2} + \tan^{-1} \frac{1}{7}$ $= \tan^{-1} \frac{2}{3} + \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{2}{3} + \tan^{-1} \frac{1}{7} = \tan^{-1} (\frac{2}{3} \times \frac{9}{8}) + \tan^{-1} \frac{1}{7}$ $= \tan^{-1} \frac{3}{4} + \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{3}{4} + \frac{1}{7} = \tan^{-1} \frac{21 + 4}{28 - 3} = \tan^{-1} \frac{25}{28}$ $= \tan^{-1} 1 = \frac{\pi}{4}$ Proved. (ii) L.H.S. $= \tan^{-1} 1 + \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \tan^{-1} 1 + \tan^{-1} \frac{1}{2} + \frac{1}{3}$ $= \tan^{-1} 1 + \tan^{-1} \frac{5}{6} = \tan^{-1} 1 + \tan^{-1} 1 = 2 \tan^{-1} 1 = 2 \times \frac{\pi}{4} = \frac{\pi}{2}$ Proved.

EXAMPLE: SOLVE

$$4 \sin^{-1} x + \cos^{-1} x = \pi$$

Solution : Given $4 \sin^{-1} x + \cos^{-1} x = \pi$ or $3 \sin^{-1} x + \sin^{-1} x + \cos^{-1} x = \pi$
or $3 \sin^{-1} x + \frac{\pi}{2} = \pi$ [: $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$]
or $3 \sin^{-1} x = \pi - \frac{\pi}{2}$ or $3 \sin^{-1} x = \frac{\pi}{2}$
or $\sin^{-1} x = \frac{\pi}{6}$ $\therefore x = \sin \frac{\pi}{6} = \frac{1}{2}$ Ans.