

Unit 5: Counters

Course Outcome:

- Understand the working mechanism and design guidelines of different counters and their role in the digital system design.

Syllabus for unit 5

Introduction of Counter, Asynchronous/Ripple Counters, Synchronous Counters, Ring Counter, Johnson Counter

Introduction of Counter:

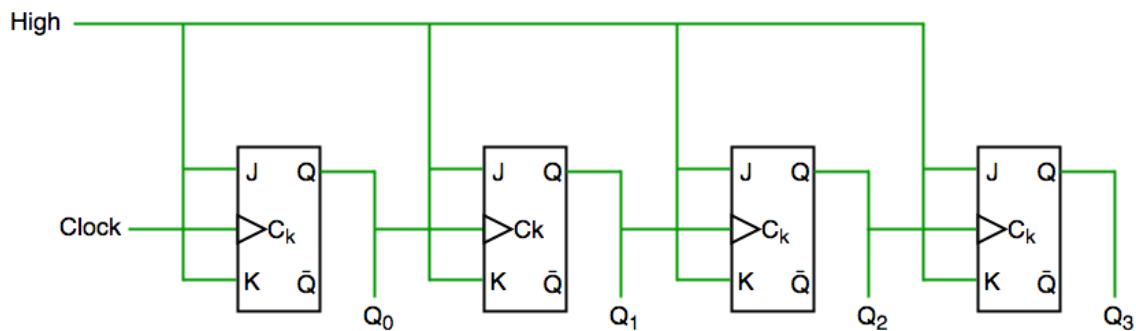
A **Counter** is a device which stores (and sometimes displays) the number of times a particular event or process has occurred, often in relationship to a clock signal. Counters are used in digital electronics for counting purpose, they can count specific event happening in the circuit.

For example, in UP counter a counter increases count for every rising edge of clock. Not only counting, a counter can follow the certain sequence based on our design like any random sequence 0,1,3,2....They can also be designed with the help of flip flops. They are used as frequency dividers where the frequency of given pulse waveform is divided. Counters are sequential circuit that count the number of pulses can be either in binary code or BCD form. The main properties of a counter are timing , sequencing , and counting. Counter works in two modes,

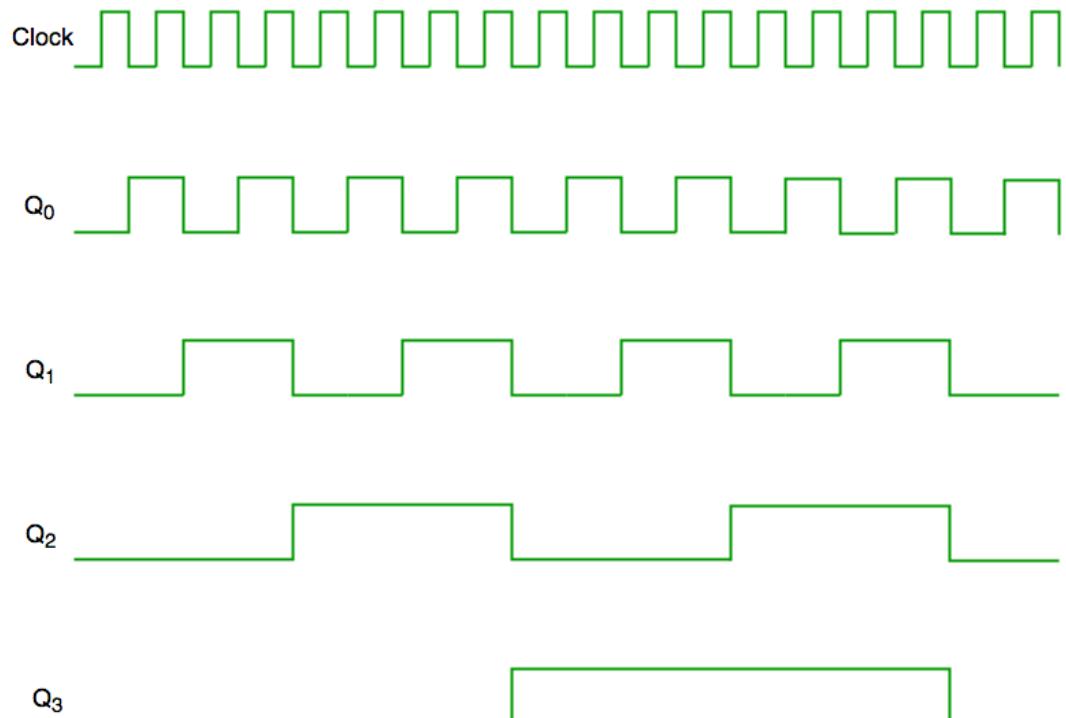
Up counter

Down counter

Counter Classification:


Counters are broadly divided into two categories

1. Asynchronous counter
2. Synchronous counter

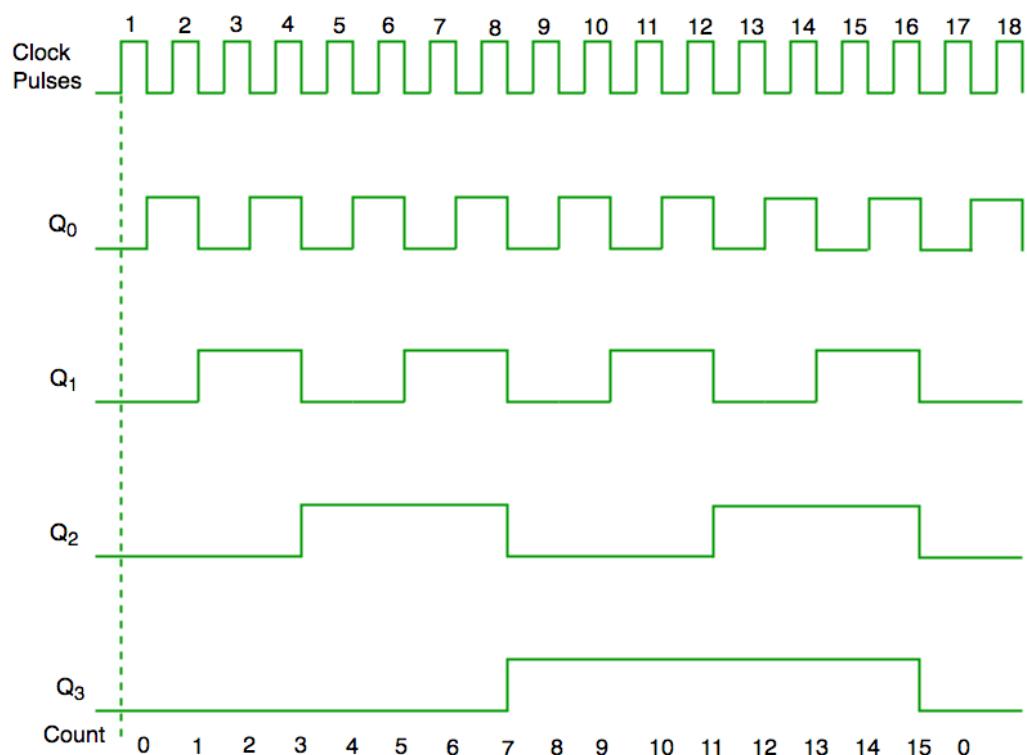
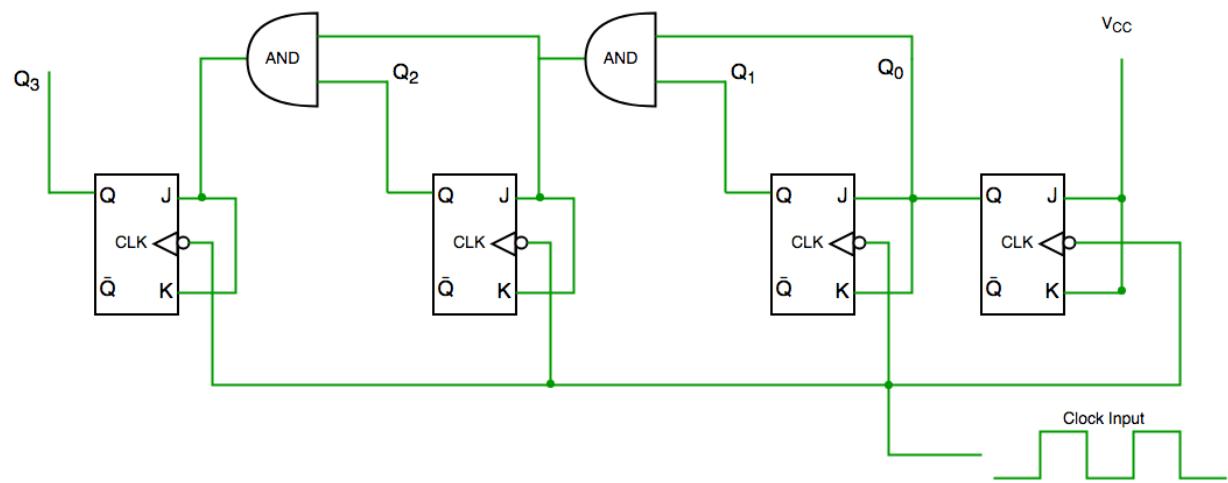

1. Asynchronous Counter :

In asynchronous counter we don't use universal clock, only first flip flop is driven by main clock and the clock input of rest of the following flip flop is driven by output of previous flip flops. We can understand it by following diagram

Unit 5: Counters

(a) Asynchronous counter

(b) Timing Diagram



It is evident from timing diagram that Q0 is changing as soon as the rising edge of clock pulse is encountered, Q1 is changing when rising edge of Q0 is encountered (because Q0 is like clock pulse for second flip flop) and so on. In this way ripples are generated through Q0, Q1, Q2, Q3 hence it is also called **RIPPLE counter**. A ripple counter is a cascaded arrangement of flip flops where the output of one flip flop drives the clock input of the following flip flop.

2. Synchronous Counter :

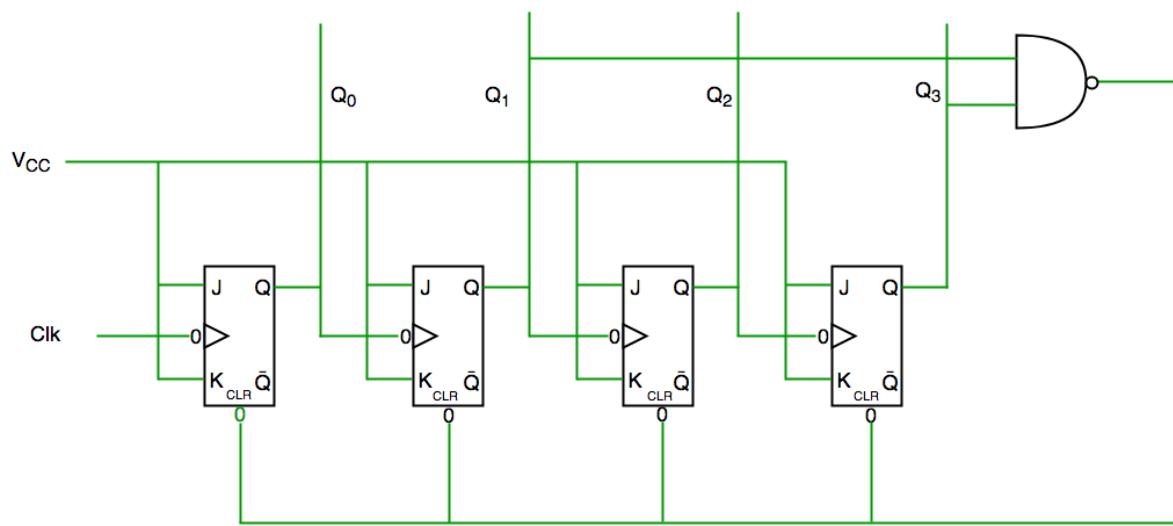
Unlike the asynchronous counter, synchronous counter has one global clock which drives each flip flop so output changes in parallel. The one advantage of synchronous

Unit 5: Counters

counter over asynchronous counter is, it can operate on higher frequency than asynchronous counter as it does not have cumulative delay because of same clock is given to each flip flop.

Unit 5: Counters

From circuit diagram we see that Q0 bit gives response to each falling edge of clock while Q1 is dependent on Q0, Q2 is dependent on Q1 and Q0, Q3 is dependent on Q2, Q1 and Q0.


Decade Counter:

A decade counter counts ten different states and then reset to its initial states. A simple decade counter will count from 0 to 9 but we can also make the decade counters which can go through any ten states between 0 to 15(for 4 bit counter).

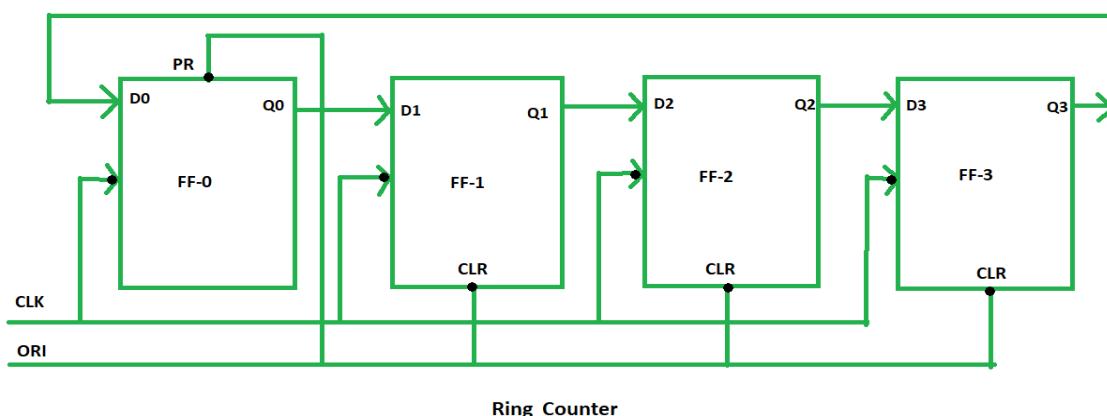
Truth table for simple decade counter

Clock pulse	Q3	Q2	Q1	Q0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	0	0	0	0

Unit 5: Counters

We see from circuit diagram that we have used NAND gate for Q3 and Q1 and feeding this to clear input line because binary representation of 10 is—

1010


And we see Q3 and Q1 are 1 here, if we give NAND of these two bits to clear input then counter will be clear at 10 and again start from beginning.

Important point: Number of flip flops used in counter are always greater than equal to $(\log_2 n)$ where n=number of states in counter.

Ring Counter:

A ring counter is a typical application of the Shift register. The ring counter is almost the same as the shift counter. The only change is that the output of the last flip-flop is connected to the input of the first flip-flop in the case of the ring counter but in the case of the shift register it is taken as output. Except for this, all the other things are the same.

No. of states in Ring counter = No. of flip-flop used
So, for designing a 4-bit Ring counter we need 4 flip-flops.

Unit 5: Counters

In this diagram, we can see that the clock pulse (CLK) is applied to all the flip-flops simultaneously. Therefore, it is a Synchronous Counter. Also, here we use Overriding input (ORI) for each flip-flop. Preset (PR) and Clear (CLR) are used as ORI. When PR is 0, then the output is 1. And when CLR is 0, then the output is 0. Both PR and CLR are active low signal that always works in value 0.

$PR = 0, Q = 1$

$CLR = 0, Q = 0$

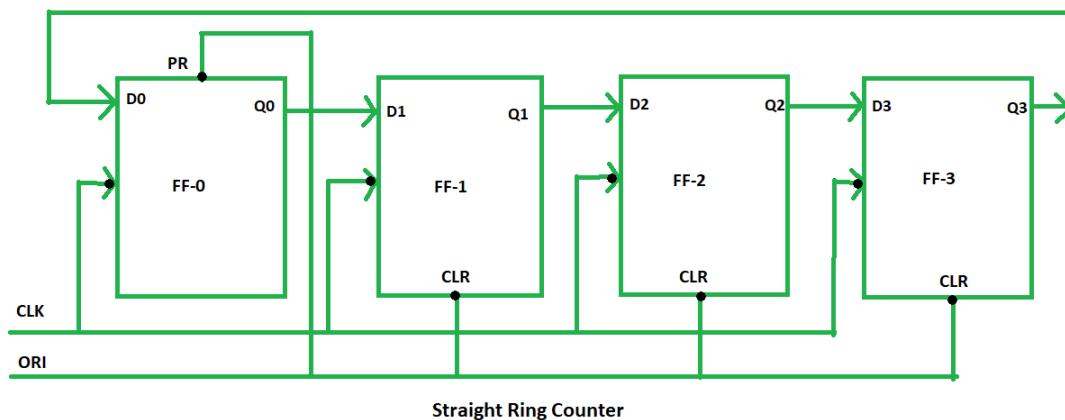
These two values are always fixed. They are independent of the value of input D and the Clock pulse (CLK).

Working – Here, ORI is connected to Preset (PR) in FF-0 and it is connected to Clear (CLR) in FF-1, FF-2, and FF-3. Thus, output $Q = 1$ is generated at FF-0, and the rest of the flip-flop generates output $Q = 0$. This output $Q = 1$ at FF-0 is known as Pre-set 1 which is used to form the ring in the Ring Counter.

ORI	CLK	Q0	Q1	Q2	Q3
low	X	1	0	0	0
high	low	0	1	0	0
high	low	0	0	1	0
high	low	0	0	0	1
high	low	1	0	0	0

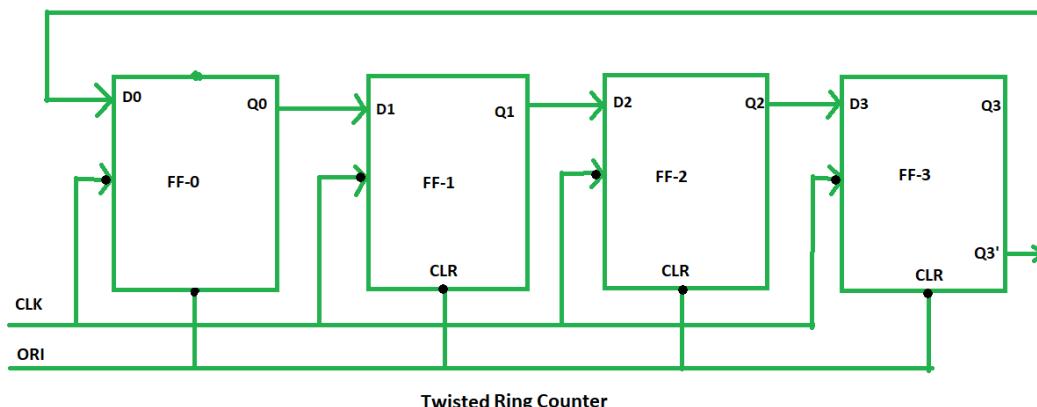
This Preseted 1 is generated by making ORI low and that time Clock (CLK) becomes don't care. After that ORI is made to high and apply low clock pulse signal as the Clock (CLK) is negative edge triggered. After that, at each clock pulse, the preseted 1 is shifted to the next flip-flop and thus forms a Ring. From the above table, we can say that there are 4 states in a 4-bit Ring Counter.

4 states are:


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

In this way can design a 4-bit Ring Counter using four D flip-flops.

Types of Ring Counter: There are two types of Ring Counter:


Unit 5: Counters

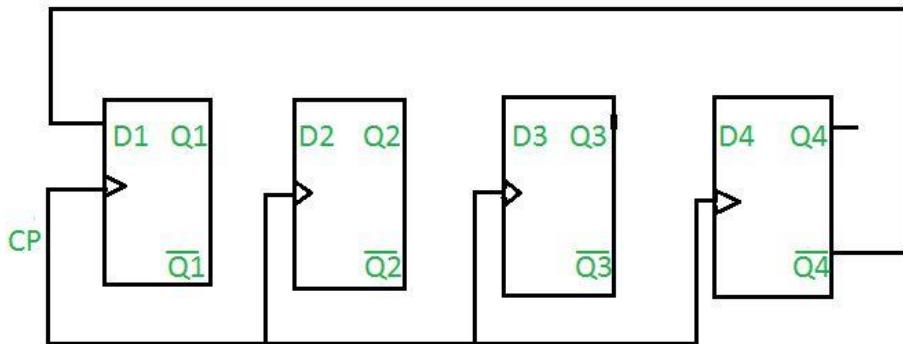
1. Straight Ring Counter: It is also known as One hot Counter. In this counter, the output of the last flip-flop is connected to the input of the first flip-flop. The main point of this Counter is that it circulates a single one (or zero) bit around the ring.

Here, we use Preset (PR) in the first flip-flop and Clock (CLK) for the last three flip-flops.

2. Twisted Ring Counter: It is also known as a switch-tail ring counter, walking ring counter, or Johnson counter. It connects the complement of the output of the last shift register to the input of the first register and circulates a stream of ones followed by zeros around the ring.

Here, we use Clock (CLK) for all the flip-flops. In the Twisted Ring Counter, the number of states = 2 X the number of flip-flops.

Johnson Counter:


Johnson counter also known as creeping counter, is an example of synchronous counter. In Johnson counter, the complemented output of last flip flop is connected to input of first flip flop and to implement n-bit Johnson counter we require n flip-flop. It is one of the most important type of shift register counter. It is formed by the feedback of the output to its own input. Johnson counter is a ring with an inversion. Another name of Johnson counter are: creeping counter, twisted ring counter, walking counter, mobile counter and switch tail counter.

Unit 5: Counters

Total number of used and unused states in n-bit Johnson counter:

number of used states= 2^n

number of unused states= $2^n - 2^n$

CP	Q1	Q2	Q3	Q4
0	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1
8	0	0	0	0

where,

CP is clock pulse and

Q1, Q2, Q3, Q4 are the states.

Question: Determine the total number of used and unused states in 4-bit Johnson counter.

Answer: Total number of used states= 2^n

$$= 2^4$$

$$= 8$$

Total number of unused states= $2^n - 2^n$

$$= 2^4 - 2^4$$

$$= 8$$

Everything has some advantages and disadvantages.

Advantages of Johnson counter:

- The Johnson counter has same number of flip flop but it can count twice the number of states the ring counter can count.
- It can be implemented using D and JK flip flop.
- Johnson ring counter is used to count the data in a continuous loop.
- Johnson counter is a self-decoding circuit.

Unit 5: Counters

Disadvantages of Johnson counter:

- Johnson counter doesn't count in a binary sequence.
- In Johnson counter more number of states remain unutilized than the number of states being utilized.
- The number of flip flops needed is one half the number of timing signals.
- It can be constructed for any number of timing sequence.

Applications of Johnson counter:

- Johnson counter is used as a synchronous decade counter or divider circuit.
- It is used in hardware logic design to create complicated Finite states machine. ex: ASIC and FPGA design.
- The 3 stage Johnson counter is used as a 3 phase square wave generator which produces 1200 phase shift.
- It is used to divide the frequency of the clock signal by varying their feedback.